Abstract:
In this paper, we present Poisson brackets of certain classes of mappings obtained as general periodic reductions of integrable lattice equations. The Poisson brackets are derived from a Lagrangian, using the so-called Ostrogradsky transformation. The $(q, -p)$ reductions are $(p+q)$-dimensional maps and explicit Poisson brackets for such reductions of the discrete KdV equation, the discrete Lotka–Volterra equation, and the discrete Liouville equation are included. Lax representations of these equations can be used to construct sufficiently many integrals for the reductions. As examples we show that the $(3, -2)$ reductions of the integrable partial difference equations are Liouville integrable in their own right.
This research was supported by the Australian Research Council and by La Trobe University’s Disciplinary Research Program in Mathematical and Computing Sciences.
Citation:
Dinh T. Tran, Peter H. van der Kamp, G. R. W. Quispel, “Poisson Brackets of Mappings Obtained as $(q, -p)$ Reductions of Lattice Equations”, Regul. Chaotic Dyn., 21:6 (2016), 682–696
\Bibitem{TraVanQui16}
\by Dinh T. Tran, Peter H. van der Kamp, G. R. W. Quispel
\paper Poisson Brackets of Mappings Obtained as $(q, -p)$ Reductions of Lattice Equations
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 6
\pages 682--696
\mathnet{http://mi.mathnet.ru/rcd218}
\crossref{https://doi.org/10.1134/S1560354716060083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3583945}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390094200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85006248637}
Linking options:
https://www.mathnet.ru/eng/rcd218
https://www.mathnet.ru/eng/rcd/v21/i6/p682
This publication is cited in the following 10 articles:
G Gubbiotti, D Latini, B K Tapley, “Coalgebra symmetry for discrete systems”, J. Phys. A: Math. Theor., 56:20 (2023), 205205
Giorgio Gubbiotti, Danilo Latini, “The sl2(R) coalgebra symmetry and the superintegrable discrete-time systems”, Phys. Scr., 98:4 (2023), 045209
G. Gubbiotti, “Classification of variational multiplicative fourth-order difference equations”, Journal of Difference Equations and Applications, 28:3 (2022), 406
Giorgio Gubbiotti, Quantum Theory and Symmetries, 2021, 67
G. Gubbiotti, “Lagrangians and integrability for additive fourth-order difference equations”, Eur. Phys. J. Plus, 135:10 (2020), 853
A. N. W. Hone, T. E. Kouloukas, “Discrete Hirota reductions associated with the lattice KdV equation”, J. Phys. A-Math. Theor., 53:36 (2020), 364002
G. Gubbiotti, N. Joshi, D. T. Tran, C.-M. Viallet, “Bi-rational maps in four dimensions with two invariants”, J. Phys. A-Math. Theor., 53:11 (2020), 115201
G. Gubbiotti, “On the inverse problem of the discrete calculus of variations”, J. Phys. A-Math. Theor., 52:30 (2019), 305203
C. A. Evripidou, G. R. W. Quispel, J. A. G. Roberts, “Poisson structures for difference equations”, J. Phys. A-Math. Theor., 51:47 (2018), 475201
Andrew N. W. Hone, Theodoros E. Kouloukas, Chloe Ward, “On Reductions of the Hirota–Miwa Equation”, SIGMA, 13 (2017), 057, 17 pp.