Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 5, Pages 581–592
DOI: https://doi.org/10.1134/S1560354716050087
(Mi rcd211)
 

This article is cited in 8 scientific papers (total in 8 papers)

The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram

Pavel E. Ryabovabc, Andrej A. Oshemkovd, Sergei V. Sokolovb

a Moscow Institute of Physics and Technology (State University) Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
b Institute of Machines Science, Russian Academy of Sciences, Maly Kharitonyevsky Per. 4, Moscow, 101990 Russia
c Financial University, Leningradsky prosp. 49, Moscow, 125993 Russia
d Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991 Russia
Citations (8)
References:
Abstract: The Adler – van Moerbeke integrable case of the Euler equations on the Lie algebra $so(4)$ is investigated. For the $L-A$ pair found by Reyman and Semenov-Tian-Shansky for this system, we explicitly present a spectral curve and construct the corresponding discriminant set. The singularities of the Adler – van Moerbeke integrable case and its bifurcation diagram are discussed. We explicitly describe singular points of rank 0, determine their types, and show that the momentum mapping takes them to self-intersection points of the real part of the discriminant set. In particular, the described structure of singularities of the Adler – van Moerbeke integrable case shows that it is topologically different from the other known integrable cases on $so(4)$.
Keywords: integrable Hamiltonian systems, spectral curve, bifurcation diagram.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00119
16-01-00170
16-01-00809
16-01-00378
15-41-02049
Ministry of Education and Science of the Russian Federation 7962.2016.1
This work is partially supported by the grants of RFBR No. 14–01–00119, 16–01–00170, 16–01–00809, and 16–01–00378, common grant of RFBR and Volgograd Region Authorities No. 15–41–02049, and the grant of the President of the Russian Federation for State Support of Leading Scientific Schools No. 7962.2016.1.
Received: 29.08.2016
Accepted: 14.09.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Pavel E. Ryabov, Andrej A. Oshemkov, Sergei V. Sokolov, “The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram”, Regul. Chaotic Dyn., 21:5 (2016), 581–592
Citation in format AMSBIB
\Bibitem{RyaOshSok16}
\by Pavel E. Ryabov, Andrej A. Oshemkov, Sergei V. Sokolov
\paper The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 5
\pages 581--592
\mathnet{http://mi.mathnet.ru/rcd211}
\crossref{https://doi.org/10.1134/S1560354716050087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3556085}
\zmath{https://zbmath.org/?q=an:06662686}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385167300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84990876567}
Linking options:
  • https://www.mathnet.ru/eng/rcd211
  • https://www.mathnet.ru/eng/rcd/v21/i5/p581
  • This publication is cited in the following 8 articles:
    1. Sergei V. Sokolov, Pavel E. Ryabov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 3030, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 2024, 080001  crossref
    2. Alexey A. Kireenkov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100001  crossref
    3. Alexey A. Kireenkov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100002  crossref
    4. Sergei V. Sokolov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100007  crossref
    5. A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “On the existence of focus singularities in one model of a Lagrange top with a vibrating suspension point”, Dokl. Math., 102:3 (2020), 468–471  mathnet  crossref  crossref  zmath  isi  elib
    6. S. V. Sokolov, P. E. Ryabov, “Bifurcation diagram of the two vortices in a Bose–Einstein condensate with intensities of the same signs”, Dokl. Math., 97:3 (2018), 286–290  mathnet  crossref  crossref  zmath  isi  elib  scopus
    7. S. V. Sokolov, “Integriruemyi sluchai Adlera–van Mërbeke. Vizualizatsiya bifurkatsii torov Liuvillya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:4 (2017), 532–539  mathnet  crossref  elib
    8. A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517–525  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:255
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025