Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 6, Pages 745–765
DOI: https://doi.org/10.1134/S1560354714060112
(Mi rcd196)
 

This article is cited in 14 scientific papers (total in 14 papers)

Invariant Manifolds at Infinity of the RTBP and the Boundaries of Bounded Motion

Regina Martíneza, Carles Simób

a Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain
b Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007, Barcelona, Catalunya, Spain
Citations (14)
References:
Abstract: Invariant manifolds of a periodic orbit at infinity in the planar circular RTBP are studied. To this end we consider the intersection of the manifolds with the passage through the barycentric pericenter. The intersections of the stable and unstable manifolds have a common even part, which can be seen as a displaced version of the two-body problem, and an odd part which gives rise to a splitting. The theoretical formulas obtained for a Jacobi constant C large enough are compared to direct numerical computations showing improved agreement when C increases. A return map to the pericenter passage is derived, and using an approximation by standard-like maps, one can make a prediction of the location of the boundaries of bounded motion. This result is compared to numerical estimates, again improving for increasing C. Several anomalous phenomena are described.
Keywords: invariant rotational curves, separatrix maps, splitting function, restricted three-body problem.
Funding agency Grant number
Ministerio de Economía y Competitividad de España MTM2010-16425
MTM2013-41168
Generalitat de Catalunya 2009 SGR 67
2014 SGR 1145
This work has been supported by grants MTM2010-16425 and MTM2013-41168 (Spain), 2009 SGR 67 and 2014 SGR 1145 (Catalonia).
Received: 20.10.2014
Accepted: 06.11.2014
Bibliographic databases:
Document Type: Article
MSC: 37N05, 70F07, 37E99
Language: English
Citation: Regina Martínez, Carles Simó, “Invariant Manifolds at Infinity of the RTBP and the Boundaries of Bounded Motion”, Regul. Chaotic Dyn., 19:6 (2014), 745–765
Citation in format AMSBIB
\Bibitem{MarSim14}
\by Regina Mart{\'\i}nez, Carles Sim\'o
\paper Invariant Manifolds at Infinity of the RTBP and the Boundaries of Bounded Motion
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 6
\pages 745--765
\mathnet{http://mi.mathnet.ru/rcd196}
\crossref{https://doi.org/10.1134/S1560354714060112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3284613}
\zmath{https://zbmath.org/?q=an:06507831}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345996200011}
Linking options:
  • https://www.mathnet.ru/eng/rcd196
  • https://www.mathnet.ru/eng/rcd/v19/i6/p745
  • This publication is cited in the following 14 articles:
    1. Xiaomei Yang, Junxiang Xu, “Lower-dimensional invariant tori for a class of degenerate reversible systems under small perturbations”, Proc. Amer. Math. Soc., 2024  crossref
    2. Narcís Miguel, Carles Simó, Arturo Vieiro, “Escape Times Across the Golden Cantorus of the Standard Map”, Regul. Chaotic Dyn., 27:3 (2022), 281–306  mathnet  crossref  mathscinet
    3. Wang X., Cao X., “On the Persistence of Lower-Dimensional Tori in Reversible Systems With Hyperbolic-Type Degenerate Equilibrium Point Under Small Perturbations”, Acta Appl. Math., 173:1 (2021), 10  crossref  mathscinet  isi  scopus
    4. M. Alvarez-Ramirez, A. Garcia, J. F. Palacian, P. Yanguas, “Oscillatory motions in restricted n-body problems (vol 265, pg 779, 2018)”, J. Differ. Equ., 267:7 (2019), 4525–4536  crossref  mathscinet  zmath  isi  scopus
    5. A. Delshams, V. Kaloshin, A. Rosa, T. M. Seara, “Global instability in the restricted planar elliptic three body problem”, Commun. Math. Phys., 366:3 (2019), 1173–1228  crossref  mathscinet  zmath  isi  scopus
    6. W. Si, J. Si, “Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems”, Nonlinearity, 31:6 (2018), 2361–2418  crossref  mathscinet  zmath  isi  scopus
    7. C. Simo, “Some questions looking for answers in dynamical systems”, Discret. Contin. Dyn. Syst., 38:12, SI (2018), 6215–6239  crossref  mathscinet  isi  scopus
    8. M. Alvarez-Ramirez, A. Garcia, J. F. Palacian, P. Yanguas, “Oscillatory motions in restricted n-body problems”, J. Differ. Equ., 265:3 (2018), 779–803  crossref  mathscinet  zmath  isi  scopus
    9. J. D. M. James, M. Murray, “Chebyshev-Taylor parameterization of stable/unstable manifolds for periodic orbits: implementation and applications”, Int. J. Bifurcation Chaos, 27:14 (2017), 1730050  crossref  mathscinet  zmath  isi  scopus
    10. I. Baldoma, E. Fontich, P. Martin, “Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points”, Discret. Contin. Dyn. Syst., 37:8 (2017), 4159–4190  crossref  mathscinet  zmath  isi  scopus
    11. C. Simo, “Experiments looking for theoretical predictions”, Indag. Math.-New Ser., 27:5, SI (2016), 1068–1080  crossref  mathscinet  zmath  isi  scopus
    12. T. Zhang, A. Jorba, J. Si, “Weakly hyperbolic invariant tort for two dimensional quasiperiodically forced maps in a degenerate case”, Discret. Contin. Dyn. Syst., 36:11 (2016), 6599–6622  crossref  mathscinet  zmath  isi  scopus
    13. A. Haro, M. Canadell, J. Figueras, A. Luque, J. Mondelo, Parameterization Method For Invariant Manifolds: From Rigorous Results to Effective Computations, Applied Mathematical Sciences Series, 195, Springer, 2016, 267 pp.  crossref  mathscinet  isi
    14. Àlex Haro, Applied Mathematical Sciences, 195, The Parameterization Method for Invariant Manifolds, 2016, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:318
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025