Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 5, Pages 586–600
DOI: https://doi.org/10.1134/S1560354714050062
(Mi rcd184)
 

This article is cited in 13 scientific papers (total in 13 papers)

Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence

Alessandro Fortunati, Stephen Wiggins

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
Citations (13)
References:
Abstract: The aim of this paper is to prove a Kolmogorov type result for a nearly integrable Hamiltonian, quadratic in the actions, with an aperiodic time dependence. The existence of a torus with a prefixed Diophantine frequency is shown in the forced system, provided that the perturbation is real-analytic and (exponentially) decaying with time. The advantage consists in the possibility to choose an arbitrarily small decaying coefficient consistently with the perturbation size.
The proof, based on the Lie series formalism, is a generalization of a work by A. Giorgilli.
Keywords: Hamiltonian systems, Kolmogorov theorem, aperiodic time dependence.
Funding agency Grant number
ONR N00014-01-1-0769
MINECO: ICMAT Severo Ochoa SEV-2011-0087
This research was supported by ONR Grant No. N00014-01-1-0769 and MINECO: ICMAT Severo Ochoa project SEV-2011-0087.
Received: 07.05.2014
Accepted: 05.09.2014
Bibliographic databases:
Document Type: Article
MSC: 70H08, 37J40, 37J25
Language: English
Citation: Alessandro Fortunati, Stephen Wiggins, “Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence”, Regul. Chaotic Dyn., 19:5 (2014), 586–600
Citation in format AMSBIB
\Bibitem{ForWig14}
\by Alessandro~Fortunati, Stephen~Wiggins
\paper Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 5
\pages 586--600
\mathnet{http://mi.mathnet.ru/rcd184}
\crossref{https://doi.org/10.1134/S1560354714050062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3266829}
\zmath{https://zbmath.org/?q=an:1308.70029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343081300006}
Linking options:
  • https://www.mathnet.ru/eng/rcd184
  • https://www.mathnet.ru/eng/rcd/v19/i5/p586
  • This publication is cited in the following 13 articles:
    1. Donato Scarcella, “Weakly asymptotically quasiperiodic solutions for time-dependent Hamiltonians with a view to celestial mechanics”, Journal of Differential Equations, 2025  crossref
    2. Donato Scarcella, “Asymptotic motions converging to arbitrary dynamics for time-dependent Hamiltonians”, Nonlinear Analysis, 243 (2024), 113528  crossref
    3. Donato Scarcella, “Asymptotically quasiperiodic solutions for time-dependent Hamiltonians”, Nonlinearity, 37:6 (2024), 065005  crossref
    4. Donato Scarcella, “Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians”, Regul. Chaotic Dyn., 29:4 (2024), 620–653  mathnet  crossref
    5. Cheng H. Xu L., “The Existence of Exponentially Decreasing Solutions to Time Dependent Hyperbolic Systems”, J. Math. Anal. Appl., 501:2 (2021), 125199  crossref  mathscinet  isi  scopus
    6. A. Fortunati, S. Wiggins, “Transient invariant and quasi-invariant structures in an example of an aperiodically time dependent fluid flow”, Int. J. Bifurcation Chaos, 28:5 (2018), 1830015  crossref  mathscinet  zmath  isi
    7. A. Fortunati, “Travelling waves over an arbitrary bathymetry: a local stability result”, Dyn. Partial Differ. Equ., 15:1 (2018), 81–94  crossref  mathscinet  zmath  isi
    8. Alessandro Fortunati, Stephen Wiggins, “Transient Invariant and Quasi-Invariant Structures in an Example of an Aperiodically Time Dependent Fluid Flow”, Int. J. Bifurcation Chaos, 28:05 (2018), 1830015  crossref
    9. A. Fortunati, S. Wiggins, “Normal forms a la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium”, Discret. Contin. Dyn. Syst.-Ser. S, 9:4 (2016), 1109–1118  crossref  mathscinet  zmath  isi  scopus
    10. A. Fortunati, S. Wiggins, “Negligibility of small divisor effects in the normal form theory for nearly-integrable Hamiltonians with decaying non-autonomous perturbations”, Celest. Mech. Dyn. Astron., 125:2 (2016), 247–262  crossref  mathscinet  zmath  isi  scopus
    11. Alessandro Fortunati, Stephen Wiggins, Essays in Mathematics and its Applications, 2016, 89  crossref
    12. Alessandro Fortunati, Stephen Wiggins, “A Kolmogorov Theorem for Nearly Integrable Poisson Systems with Asymptotically Decaying Time-dependent Perturbation”, Regul. Chaotic Dyn., 20:4 (2015), 476–485  mathnet  crossref  mathscinet  zmath  adsnasa
    13. M. Canadell, R. Llave, “KAM tori and whiskered invariant tori for non-autonomous systems”, Physica D, 310 (2015), 104–113  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:245
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025