Abstract:
In this paper a symplectic realization for the Maxwell–Bloch equations with the rotating wave approximation is given, which also leads to a Lagrangian formulation. We show how Lie point symmetries generate a third constant of motion for the dynamical system considered.
\Bibitem{Cas14}
\by Ioan~Ca{\c s}u
\paper Symmetries of the Maxwell–Bloch Equations with the Rotating Wave Approximation
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 5
\pages 548--555
\mathnet{http://mi.mathnet.ru/rcd181}
\crossref{https://doi.org/10.1134/S1560354714050037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3266826}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343081300003}
Linking options:
https://www.mathnet.ru/eng/rcd181
https://www.mathnet.ru/eng/rcd/v19/i5/p548
This publication is cited in the following 5 articles:
G. Gorni, G. Zampieri, “Nonstandard separation of variables for the Maxwell-Bloch conservative system”, Sao Paulo J. Math. Sci., 12:1 (2018), 146–169
Ioan Caşu, Cristian Lăzureanu, “Stability and Integrability Aspects for the Maxwell–Bloch Equations with the Rotating Wave Approximation”, Regul. Chaotic Dyn., 22:2 (2017), 109–121
C. Lazureanu, “On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control”, Math. Phys. Anal. Geom., 20:3 (2017), 20
C. Lazureanu, T. Binzar, “Symmetries of some classes of dynamical systems”, J. Nonlinear Math. Phys., 22:2 (2015), 265–274
C. Lazureanu, T. Binzar, “On some properties and symmetries of the 5-dimensional Lorenz system”, Math. Probl. Eng., 2015, 438694