Abstract:
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
This work is supported by the Russian Science Foundation under grant 14-50-00005 and performed in Steklov Mathematical Institute of Russian Academy of Sciences.
Citation:
Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152
\Bibitem{KarKil15}
\by Yury L. Karavaev, Alexander A. Kilin
\paper The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 2
\pages 134--152
\mathnet{http://mi.mathnet.ru/rcd17}
\crossref{https://doi.org/10.1134/S1560354715020033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3332947}
\zmath{https://zbmath.org/?q=an:1317.93192}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..134K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352483000003}
\elib{https://elibrary.ru/item.asp?id=24024283}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928249695}
Linking options:
https://www.mathnet.ru/eng/rcd17
https://www.mathnet.ru/eng/rcd/v20/i2/p134
This publication is cited in the following 69 articles:
Theresa E. Honein, Oliver M. O'Reilly, “Explorations of the holonomy of a rolling sphere”, Proc. R. Soc. A., 480:2282 (2024)
Hui Bian, Zihan Li, Chang-Qian Meng, “Design and motion analysis of a new wheeled rolling robot”, Mech. Sci., 15:2 (2024), 431
Stefano Mauro, Marcello Romano, 2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2024, 213
Matteo Melchiorre, Tommaso Colamartino, Martina Ferrauto, Mario Troise, Laura Salamina, Stefano Mauro, “Design of a Spherical Rover Driven by Pendulum and Control Moment Gyroscope for Planetary Exploration”, Robotics, 13:6 (2024), 87
B. I. Adamov, “Geometry and Kinematics of the Mecanum Wheel on a Plane and a Sphere”, Rus. J. Nonlin. Dyn., 20:1 (2024), 43–78
N. V. Nor, “Reinforcement Learning in the Task of Spherical Robot Motion Control”, Rus. J. Nonlin. Dyn., 20:2 (2024), 295–310
Han Mao, Tongtong Xie, Aibin Zhu, Di Zhang, Xinyu Wu, Cheng Li, Xin Wang, 2024 2nd International Conference on Design Science (ICDS), 2024, 1
Suwan Bu, Liang Yan, Xiaoshan Gao, Gang Wang, Peiran Zhao, I-Ming Chen, “Design and Motion Control of Spherical Robot With Built-In Four-Wheel Omnidirectional Mobile Platform”, IEEE Trans. Instrum. Meas., 72 (2023), 1
Jingang Jiang, Yi Zhang, Shichang Song, Jianpeng Sun, Dianhao Wu, “Research Development of Centroid Deviation Type Spherical Robot”, ENG, 17:2 (2023)
Karla Schröder, Gonzalo Garcia, Roberto Chacón, Guelis Montenegro, Alberto Marroquín, Gonzalo Farias, Sebastián Dormido-Canto, Ernesto Fabregas, “Development and Control of a Real Spherical Robot”, Sensors, 23:8 (2023), 3895
Shihao Fang, Jianjun Qin, Yu Cao, Pai Shao, 2023 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 2023, 365
Wenke Ma, Chenyang Chang, Yuxue Cao, Futao Wang, Pengfei Wang, Bingyang Li, Lecture Notes in Electrical Engineering, 845, Advances in Guidance, Navigation and Control, 2023, 5850
Bernard Brogliato, “Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives”, Annual Reviews in Control, 55 (2023), 297
E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability
of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707
Yu. L. Karavaev, “Spherical Robots:
An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750
G. R. Saypulaev, B. I. Adamov, A. I. Kobrin, “Comparative Analysis of the Dynamics of a Spherical
Robot with a Balanced Internal Platform Taking into
Account Different Models of Contact Friction”, Rus. J. Nonlin. Dyn., 18:5 (2022), 803–815
Guelis Montenegro, Roberto Chacón, Ernesto Fabregas, Gonzalo Garcia, Karla Schröder, Alberto Marroquín, Sebastián Dormido-Canto, Gonzalo Farias, “Modeling and Control of a Spherical Robot in the CoppeliaSim Simulator”, Sensors, 22:16 (2022), 6020
Luigi Romano, Francesco Timpone, Fredrik Bruzelius, Bengt Jacobson, “Rolling, tilting and spinning spherical wheels: Analytical results using the brush theory”, Mechanism and Machine Theory, 173 (2022), 104836
V. M. Budanov, Yu. D. Selyutskiy, A. M. Formalskii, “Prevention of Oscillations of a Spherical Robot in Longitudinal Motion”, J. Comput. Syst. Sci. Int., 61:4 (2022), 567
Jasper Zevering, Dorit Borrmann, Anton Bredenbeck, Andreas Nüchter, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, 5656