Abstract:
Let M be a normally hyperbolic symplectic critical manifold of a Hamiltonian system. Suppose M consists of equilibria with real eigenvalues. We prove an analog of the Shilnikov lemma (strong version of the λ-lemma) describing the behavior of trajectories near M. Using this result, trajectories shadowing chains of homoclinic orbits to M are represented as extremals of a discrete variational problem. Then the existence of shadowing periodic orbits is proved. This paper is motivated by applications to the Poincaré’s second species solutions of the 3 body problem with 2 masses small of order μ. As μ→0, double collisions of small bodies correspond to a symplectic critical manifold M of the regularized Hamiltonian system. Thus our results imply the existence of Poincaré’s second species (nearly collision) periodic solutions for the unrestricted 3 body problem.