Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 703–718
DOI: https://doi.org/10.1134/S1560354713060105
(Mi rcd165)
 

This article is cited in 13 scientific papers (total in 13 papers)

On Action-angle Coordinates and the Poincaré Coordinates

Jacques Féjozab

a Université Paris-Dauphine – CEREMADE (UMR 7534), Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
b Observatoire de Paris – IMCCE (UMR 8028), 77 avenue Denfert-Rochereau, 75014 Paris, France
Citations (13)
References:
Abstract: This article is a review of two related classical topics of Hamiltonian systems and celestial mechanics. The first section deals with the existence and construction of action-angle coordinates, which we describe emphasizing the role of the natural adiabatic invariants "γpdq". The second section is the construction and properties of the Poincaré coordinates in the Kepler problem, adapting the principles of the former section, in an attempt to use known first integrals more directly than Poincaré did.
Keywords: Hamiltonian system, Lagrangian fibration, action-angle coordinates, Liouville–Arnold theorem, adiabatic invariants, Kepler problem, two-body problem, Poincaré coordinates, planetary problem, first integral, integrability, perturbation theory.
Funding agency Grant number
Agence Nationale de la Recherche ANR-10-BLAN 0102 DynPDE
The author has been partially supported by the French ANR (projet ANR-10-BLAN 0102 DynPDE).
Received: 30.10.2013
Accepted: 11.11.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jacques Féjoz, “On Action-angle Coordinates and the Poincaré Coordinates”, Regul. Chaotic Dyn., 18:6 (2013), 703–718
Citation in format AMSBIB
\Bibitem{Fej13}
\by Jacques F\'ejoz
\paper On Action-angle Coordinates and the Poincaré Coordinates
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 703--718
\mathnet{http://mi.mathnet.ru/rcd165}
\crossref{https://doi.org/10.1134/S1560354713060105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146588}
\zmath{https://zbmath.org/?q=an:1290.01001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900010}
Linking options:
  • https://www.mathnet.ru/eng/rcd165
  • https://www.mathnet.ru/eng/rcd/v18/i6/p703
  • This publication is cited in the following 13 articles:
    1. Donato Scarcella, “Weakly asymptotically quasiperiodic solutions for time-dependent Hamiltonians with a view to celestial mechanics”, Journal of Differential Equations, 2025  crossref
    2. Andrew Clarke, Jacques Fejoz, Marcel Guardia, “Why are inner planets not inclined?”, Publ.math.IHES, 2024  crossref
    3. Ramond P., Perez J., “New Methods of Isochrone Mechanics”, J. Math. Phys., 62:11 (2021), 112704  crossref  mathscinet  isi  scopus
    4. Jackman C., “Secular Dynamics For Curved Two-Body Problems”, J. Dyn. Differ. Equ., 2021  crossref  isi  scopus
    5. Barbieri S., Niederman L., “Sharp Nekhoroshev Estimates For the Three-Body Problem Around Periodic Orbits”, J. Differ. Equ., 268:7 (2020), 3749–3780  crossref  mathscinet  zmath  isi  scopus
    6. G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Am. Math. Soc., 255, no. 1218, 2018, v+92 pp.  crossref  mathscinet  isi  scopus
    7. Nguyen Tien Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833  crossref  mathscinet  zmath  isi  scopus
    8. J. Laskar, “Andoyer construction for Hill and Delaunay variables”, Celest. Mech. Dyn. Astron., 128:4 (2017), 475–482  crossref  mathscinet  zmath  isi  scopus
    9. A. Boscaggin, R. Ortega, “Periodic solutions of a perturbed Kepler problem in the plane: from existence to stability”, J. Differ. Equ., 261:4 (2016), 2528–2551  crossref  mathscinet  zmath  isi  scopus
    10. A. Kiesenhofer, E. Miranda, G. Scott, “Action-angle variables and a KAM theorem for b-Poisson manifolds”, J. Math. Pures Appl., 105:1 (2016), 66–85  crossref  mathscinet  zmath  isi  scopus
    11. Yu. A. Grigoryev, A. V. Tsiganov, “On bi-Hamiltonian formulation of the perturbed Kepler problem”, J. Phys. A-Math. Theor., 48:17 (2015), 175206  crossref  mathscinet  zmath  isi  scopus
    12. G. Pinzari, “Global Kolmogorov tori in the planetary N-body problem. Announcement of result”, Electron. Res. Announc. Math. Sci., 22 (2015), 55–75  crossref  mathscinet  zmath  isi
    13. Gabriella Pinzari, “Global Kolmogorov tori in the planetary N-body problem. Announcement of result”, ERA-MS, 22 (2015), 55  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:211
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025