Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 686–696
DOI: https://doi.org/10.1134/S1560354713060087
(Mi rcd159)
 

This article is cited in 29 scientific papers (total in 29 papers)

Capture into Resonance and Escape from it in a Forced Nonlinear Pendulum

Anatoly I. Neishtadtab, Alexey A. Vasilievb, Anton V. Artemyevb

a Dept. of Math. Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
b Space Research Institute, Profsoyuznaya ul. 84/32, Moscow 117997, Russia
Citations (29)
References:
Abstract: We study the dynamics of a nonlinear pendulum under a periodic force with small amplitude and slowly decreasing frequency. It is well known that when the frequency of the external force passes through the value of the frequency of the unperturbed pendulum’s oscillations, the pendulum can be captured into resonance. The captured pendulum oscillates in such a way that the resonance is preserved, and the amplitude of the oscillations accordingly grows. We consider this problem in the frames of a standard Hamiltonian approach to resonant phenomena in slow-fast Hamiltonian systems developed earlier, and evaluate the probability of capture into resonance. If the system passes through resonance at small enough initial amplitudes of the pendulum, the capture occurs with necessity (so-called autoresonance). In general, the probability of capture varies between one and zero, depending on the initial amplitude. We demonstrate that a pendulum captured at small values of its amplitude escapes from resonance in the domain of oscillations close to the separatrix of the pendulum, and evaluate the amplitude of the oscillations at the escape.
Keywords: autoresonance, capture into resonance, adiabatic invariant, pendulum.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00251
Ministry of Education and Science of the Russian Federation NSh-2519.2012.1
Russian Academy of Sciences - Federal Agency for Scientific Organizations OFN-15
The work was supported in part by the Russian Foundation for Basic Research (project no. 13-01-00251) and Russian Federation Presidential Program for the State Support of Leading Scientific Schools (project NSh-2519.2012.1). The work of A.V.A. and V.A.A. was also partially supported by the Russian Academy of Science (OFN-15).
Received: 12.09.2013
Accepted: 17.10.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anatoly I. Neishtadt, Alexey A. Vasiliev, Anton V. Artemyev, “Capture into Resonance and Escape from it in a Forced Nonlinear Pendulum”, Regul. Chaotic Dyn., 18:6 (2013), 686–696
Citation in format AMSBIB
\Bibitem{NeiVasArt13}
\by Anatoly I. Neishtadt, Alexey A. Vasiliev, Anton V. Artemyev
\paper Capture into Resonance and Escape from it in a Forced Nonlinear Pendulum
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 686--696
\mathnet{http://mi.mathnet.ru/rcd159}
\crossref{https://doi.org/10.1134/S1560354713060087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146586}
\zmath{https://zbmath.org/?q=an:1286.70024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900008}
Linking options:
  • https://www.mathnet.ru/eng/rcd159
  • https://www.mathnet.ru/eng/rcd/v18/i6/p686
  • This publication is cited in the following 29 articles:
    1. Zuo-Bing Wu, “Periodic and chaotic behaviors of a compound pendulum driven by a horizontal periodic external force”, Phys. Scr., 100:1 (2025), 016102  crossref
    2. Sergey V. Bolotin, “Dynamics of Slow-Fast Hamiltonian Systems: The Saddle–Focus Case”, Regul. Chaotic Dyn., 30:1 (2025), 76–92  mathnet  crossref
    3. A. V. Artemyev, D. Mourenas, X.-J. Zhang, O. Agapitov, A. I. Neishtadt, D. L. Vainchtein, A. A. Vasiliev, X. Zhang, Q. Ma, J. Bortnik, V. V. Krasnoselskikh, “Nonlinear Resonant Interactions of Radiation Belt Electrons with Intense Whistler-Mode Waves”, Space Sci Rev, 221:1 (2025)  crossref
    4. Yongyi Gu, Chunling Jiang, Yongkang Lai, “Analytical Solutions of the Fractional Hirota–Satsuma Coupled KdV Equation along with Analysis of Bifurcation, Sensitivity and Chaotic Behaviors”, Fractal Fract, 8:10 (2024), 585  crossref
    5. D. D. Kulminskiy, M. V. Malyshev, “Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point”, Rus. J. Nonlin. Dyn., 20:4 (2024), 553–563  mathnet  crossref
    6. Sergey V. Bolotin, “Separatrix Maps in Slow–Fast Hamiltonian Systems”, Proc. Steklov Inst. Math., 322 (2023), 32–51  mathnet  crossref  crossref
    7. A. Bazzani, F. Capoani, M. Giovannozzi, R. Tomás, “Nonlinear cooling of an annular beam distribution”, Phys. Rev. Accel. Beams, 26:2 (2023)  crossref
    8. Armando Bazzani, Federico Capoani, Massimo Giovannozzi, “Analysis of adiabatic trapping phenomena for quasi-integrable area-preserving maps in the presence of time-dependent exciters”, Phys. Rev. E, 106:3 (2022)  crossref
    9. Gerson Cruz Araujo, Hildeberto E. Cabral, “Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point”, Regul. Chaotic Dyn., 26:1 (2021), 39–60  mathnet  crossref  mathscinet
    10. S. V. Bolotin, “Crossing of the Critical Energy Level in Hamiltonian Systems with Slow Dependence on Time”, Math. Notes, 110:6 (2021), 956–959  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Pivovarov M.L., “Steady-State Solutions of Minorsky'S Quasi-Linear Equation”, Nonlinear Dyn., 106:4 (2021), 3075–3089  crossref  isi  scopus
    12. Artemyev V A., Neishtadt I A., Albert J.M., Gan L., Li W., Ma Q., “Theoretical Model of the Nonlinear Resonant Interaction of Whistler-Mode Waves and Field-Aligned Electrons”, Phys. Plasmas, 28:5 (2021), 052902  crossref  isi  scopus
    13. Sultanov O.A., “Autoresonance in Oscillating Systems With Combined Excitation and Weak Dissipation”, Physica D, 417 (2021), 132835  crossref  mathscinet  isi  scopus
    14. Sultanov O.A., “Bifurcations of Autoresonant Modes in Oscillating Systems With Combined Excitation”, Stud. Appl. Math., 144:2 (2020), 213–241  crossref  mathscinet  isi  scopus
    15. Sergey V. Bolotin, “Local Adiabatic Invariants Near a Homoclinic Set of a Slow–Fast Hamiltonian System”, Proc. Steklov Inst. Math., 310 (2020), 12–24  mathnet  crossref  crossref  isi  elib
    16. Lyubimov V.V., “Direct and Inverse Secondary Resonance Effects in the Spherical Motion of An Asymmetric Rigid Body With Moving Masses”, Acta Mech., 231:12 (2020), 4933–4946  crossref  mathscinet  zmath  isi  scopus
    17. Sergey V. Bolotin, “Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System”, Regul. Chaotic Dyn., 24:6 (2019), 682–703  mathnet  crossref  mathscinet
    18. Sultanov O., “Capture Into Parametric Autoresonance in the Presence of Noise”, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 14–21  crossref  mathscinet  isi  scopus
    19. Pashin D., Satanin A.M., Kim Ch.S., “Classical and Quantum Dissipative Dynamics in Josephson Junctions: An Arnold Problem, Bifurcation, and Capture Into Resonance”, Phys. Rev. E, 99:6 (2019), 062223  crossref  mathscinet  isi  scopus
    20. Kalyakin L.A., “Capture and Keeping of a Resonance Near Equilibrium”, Russ. J. Math. Phys., 26:2 (2019), 152–167  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:294
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025