Abstract:
We discuss algebraic properties of a pencil generated by two compatible Poisson
tensors A(x) and B(x). From the algebraic viewpoint this amounts to studying the properties of a pair of skew-symmetric bilinear forms A and B defined on a finite-dimensional vector space. We describe the Lie group GP of linear automorphisms of the pencil P={A+λB}. In particular, we obtain an explicit formula for the dimension of GP and discuss some other
algebraic properties such as solvability and Levi – Malcev decomposition.
This publication is cited in the following 6 articles:
A. Bolsinov, V. S. Matveev, E. Miranda, S. Tabachnikov, “Open problems, questions and challenges in finite-dimensional integrable systems”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 376:2131 (2018), 20170430
A. V. Bolsinov, A. M. Izosimov, D. M. Tsonev, “Finite-dimensional integrable systems: a collection of research problems”, J. Geom. Phys., 115 (2017), 2–15
F. Dopico, F. Uhlig, “Computing matrix symmetrizers, part 2: New methods using eigendata and linear means; a comparison”, Linear Alg. Appl., 504 (2016), 590–622
A. V. Bolsinov, P. Zhang, “Jordan-Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86
A. Bolsinov, “Singularities of bi-Hamiltonian systems and stability analysis”: A. Bolsinov, J. J. Morales-Ruiz, Nguyen Tien Zung, Geometry and Dynamics of Integrable Systems, Advanced Courses in Mathematics – CRM Barcelona, Birkhauser Verlag Ag, 2016, 35–84
S. Rosemann, K. Schoebel, “Open problems in the theory of finite-dimensional integrable systems and related fields”, J. Geom. Phys., 87 (2015), 396–414