Abstract:
We study the regular and chaotic dynamics of two nonholonomic models of a Celtic stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle, and undergoes certain stages of development under the change of a parameter including the appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete Lorenz attractors) and trace both scenarios of development and break-down of these attractors.
This work was supported by the RFBR grants №11-01-00001, 13-01-00589 and 13-01-97028-povolzhye, the Federal Target Program “Personnel” №14.B37.21.0361, and by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Contract №14.B37.21.0863).
Citation:
Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov, “Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538
\Bibitem{GonGonKaz13}
\by Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov
\paper Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 521--538
\mathnet{http://mi.mathnet.ru/rcd137}
\crossref{https://doi.org/10.1134/S1560354713050055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3117260}
\zmath{https://zbmath.org/?q=an:06292757}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325810200005}
Linking options:
https://www.mathnet.ru/eng/rcd137
https://www.mathnet.ru/eng/rcd/v18/i5/p521
This publication is cited in the following 86 articles:
A.J. Homburg, J.S.W. Lamb, D.V. Turaev, “Symmetric homoclinic tangles in reversible dynamical systems have positive topological entropy”, Advances in Mathematics, 464 (2025), 110131
Anastasiia A. Emelianova, Vladimir I. Nekorkin, “Synchronization and Chaos in Adaptive Kuramoto Networks with Higher-Order Interactions: A Review”, Regul. Chaotic Dyn., 30:1 (2025), 57–75
Nikolay E. Kulagin, Lev M. Lerman, Konstantin N. Trifonov, “Twin Heteroclinic Connections of Reversible Systems”, Regul. Chaotic Dyn., 29:1 (2024), 40–64
Alexey Kazakov, Ainoa Murillo, Arturo Vieiro, Kirill Zaichikov, “Numerical Study of Discrete Lorenz-Like Attractors”, Regul. Chaotic Dyn., 29:1 (2024), 78–99
S. V. Gonchenko, A. S. Gonchenko, K. E. Morozov, “The Third Type of Dynamics and Poincaré Homoclinic Trajectories”, Radiophys Quantum El, 66:9 (2024), 693
S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, E. A. Samylina, “Smeshannaya dinamika: elementy teorii i primery”, Izvestiya vuzov. PND, 32:6 (2024), 722–765
A. S. Gonchenko, “O diskretnykh attraktorakh Lorentsa razlichnykh tipov”, Izvestiya vuzov. PND, 32:6 (2024), 832–857
Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum:
Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130
Anastasiia A. Emelianova, Vladimir I. Nekorkin, “The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions”, Mathematics, 11:19 (2023), 4024
Y.M. Chen, B.Q. Gong, Z.C. Zheng, “On the subcritical period doubling of a non-smooth network system by incremental harmonic balance method”, International Journal of Non-Linear Mechanics, 148 (2023), 104256
A.A. Emelianova, V.I. Nekorkin, “The influence of nonisochronism on mixed dynamics in a system of two adaptively coupled rotators”, Chaos, Solitons & Fractals, 169 (2023), 113271
Marina S. Gonchenko, Alexey O. Kazakov, Evgeniya A. Samylina, Aikan Shykhmamedov, “On 1:3 Resonance Under Reversible Perturbations
of Conservative Cubic Hénon Maps”, Regul. Chaotic Dyn., 27:2 (2022), 198–216
Ivan I. Ovsyannikov, “On the Birth of Discrete Lorenz Attractors
Under Bifurcations of 3D Maps
with Nontransversal Heteroclinic Cycles”, Regul. Chaotic Dyn., 27:2 (2022), 217–231
Sergey Gonchenko, Alexey Kazakov, Dmitry Turaev, Andrey L. Shilnikov, “Leonid Shilnikov and mathematical theory of dynamical chaos”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:1 (2022)
Sergey Gonchenko, Efrosiniia Karatetskaia, Alexey Kazakov, Vyacheslav Kruglov, “Conjoined Lorenz twins—a new pseudohyperbolic attractor in three-dimensional maps and flows”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:12 (2022)
Evgeny A. Grines, Alexey Kazakov, Igor R. Sataev, “On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:9 (2022)
E. Kuryzhov, E. Karatetskaia, D. Mints, “Lorenz- and Shilnikov-Shape Attractors
in the Model of Two Coupled Parabola Maps”, Rus. J. Nonlin. Dyn., 17:2 (2021), 165–174
Gonchenko S.V., “Three Forms of Dynamical Chaos”, Radiophys. Quantum Electron., 63:9-10 (2021), 756–775
Gonchenko A.S. Gonchenko M.S. Kozlov A.D. Samylina E.A., “On Scenarios of the Onset of Homoclinic Attractors in Three-Dimensional Non-Orientable Maps”, Chaos, 31:4 (2021), 043122
Gonchenko M., Gonchenko S., Safonov K., “Reversible Perturbations of Conservative Henon-Like Maps”, Discret. Contin. Dyn. Syst., 41:4 (2021), 1875–1895