Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 5, Pages 521–538
DOI: https://doi.org/10.1134/S1560354713050055
(Mi rcd137)
 

This article is cited in 85 scientific papers (total in 86 papers)

Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone

Alexander S. Gonchenkoa, Sergey V. Gonchenkoa, Alexey O. Kazakovab

a Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University, ul. Ul’yanova 10, Nizhny Novgorod, 603005 Russia
b Institute of Computer Science, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (86)
References:
Abstract: We study the regular and chaotic dynamics of two nonholonomic models of a Celtic stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle, and undergoes certain stages of development under the change of a parameter including the appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete Lorenz attractors) and trace both scenarios of development and break-down of these attractors.
Keywords: celtic stone, nonholonomic model, strange attractor, discrete Lorenz attractor, Shilnikov-like spiral attractor, mixed dynamics.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00001
13-01-00589
13-01-97028-povolzhye
Ministry of Education and Science of the Russian Federation 14.B37.21.0361
14.B37.21.0863
This work was supported by the RFBR grants №11-01-00001, 13-01-00589 and 13-01-97028-povolzhye, the Federal Target Program “Personnel” №14.B37.21.0361, and by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Contract №14.B37.21.0863).
Received: 25.06.2013
Accepted: 12.09.2013
Bibliographic databases:
Document Type: Article
MSC: 37J60, 37N15, 37G35
Language: English
Citation: Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov, “Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538
Citation in format AMSBIB
\Bibitem{GonGonKaz13}
\by Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov
\paper Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 521--538
\mathnet{http://mi.mathnet.ru/rcd137}
\crossref{https://doi.org/10.1134/S1560354713050055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3117260}
\zmath{https://zbmath.org/?q=an:06292757}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325810200005}
Linking options:
  • https://www.mathnet.ru/eng/rcd137
  • https://www.mathnet.ru/eng/rcd/v18/i5/p521
  • This publication is cited in the following 86 articles:
    1. A.J. Homburg, J.S.W. Lamb, D.V. Turaev, “Symmetric homoclinic tangles in reversible dynamical systems have positive topological entropy”, Advances in Mathematics, 464 (2025), 110131  crossref
    2. Anastasiia A. Emelianova, Vladimir I. Nekorkin, “Synchronization and Chaos in Adaptive Kuramoto Networks with Higher-Order Interactions: A Review”, Regul. Chaotic Dyn., 30:1 (2025), 57–75  mathnet  crossref
    3. Nikolay E. Kulagin, Lev M. Lerman, Konstantin N. Trifonov, “Twin Heteroclinic Connections of Reversible Systems”, Regul. Chaotic Dyn., 29:1 (2024), 40–64  mathnet  crossref
    4. Alexey Kazakov, Ainoa Murillo, Arturo Vieiro, Kirill Zaichikov, “Numerical Study of Discrete Lorenz-Like Attractors”, Regul. Chaotic Dyn., 29:1 (2024), 78–99  mathnet  crossref
    5. S. V. Gonchenko, A. S. Gonchenko, K. E. Morozov, “The Third Type of Dynamics and Poincaré Homoclinic Trajectories”, Radiophys Quantum El, 66:9 (2024), 693  crossref
    6. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, E. A. Samylina, “Smeshannaya dinamika: elementy teorii i primery”, Izvestiya vuzov. PND, 32:6 (2024), 722–765  mathnet  crossref
    7. A. S. Gonchenko, “O diskretnykh attraktorakh Lorentsa razlichnykh tipov”, Izvestiya vuzov. PND, 32:6 (2024), 832–857  mathnet  crossref
    8. Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130  mathnet  crossref  mathscinet
    9. Anastasiia A. Emelianova, Vladimir I. Nekorkin, “The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions”, Mathematics, 11:19 (2023), 4024  crossref
    10. Y.M. Chen, B.Q. Gong, Z.C. Zheng, “On the subcritical period doubling of a non-smooth network system by incremental harmonic balance method”, International Journal of Non-Linear Mechanics, 148 (2023), 104256  crossref
    11. A.A. Emelianova, V.I. Nekorkin, “The influence of nonisochronism on mixed dynamics in a system of two adaptively coupled rotators”, Chaos, Solitons & Fractals, 169 (2023), 113271  crossref
    12. Marina S. Gonchenko, Alexey O. Kazakov, Evgeniya A. Samylina, Aikan Shykhmamedov, “On 1:3 Resonance Under Reversible Perturbations of Conservative Cubic Hénon Maps”, Regul. Chaotic Dyn., 27:2 (2022), 198–216  mathnet  crossref  mathscinet
    13. Ivan I. Ovsyannikov, “On the Birth of Discrete Lorenz Attractors Under Bifurcations of 3D Maps with Nontransversal Heteroclinic Cycles”, Regul. Chaotic Dyn., 27:2 (2022), 217–231  mathnet  crossref  mathscinet
    14. Sergey Gonchenko, Alexey Kazakov, Dmitry Turaev, Andrey L. Shilnikov, “Leonid Shilnikov and mathematical theory of dynamical chaos”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:1 (2022)  crossref
    15. Sergey Gonchenko, Efrosiniia Karatetskaia, Alexey Kazakov, Vyacheslav Kruglov, “Conjoined Lorenz twins—a new pseudohyperbolic attractor in three-dimensional maps and flows”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:12 (2022)  crossref
    16. Evgeny A. Grines, Alexey Kazakov, Igor R. Sataev, “On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:9 (2022)  crossref
    17. E. Kuryzhov, E. Karatetskaia, D. Mints, “Lorenz- and Shilnikov-Shape Attractors in the Model of Two Coupled Parabola Maps”, Rus. J. Nonlin. Dyn., 17:2 (2021), 165–174  mathnet  crossref
    18. Gonchenko S.V., “Three Forms of Dynamical Chaos”, Radiophys. Quantum Electron., 63:9-10 (2021), 756–775  crossref  isi  scopus
    19. Gonchenko A.S. Gonchenko M.S. Kozlov A.D. Samylina E.A., “On Scenarios of the Onset of Homoclinic Attractors in Three-Dimensional Non-Orientable Maps”, Chaos, 31:4 (2021), 043122  crossref  isi  scopus
    20. Gonchenko M., Gonchenko S., Safonov K., “Reversible Perturbations of Conservative Henon-Like Maps”, Discret. Contin. Dyn. Syst., 41:4 (2021), 1875–1895  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:385
    References:88
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025