Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2024, Volume 29, Issue 1, paper published in the English version journal
DOI: https://doi.org/10.1134/S1560354724010039
(Mi rcd1243)
 

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

On Bifurcations of Symmetric Elliptic Orbits

Marina S. Gonchenko

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
Citations (1)
References:
Abstract: We study bifurcations of symmetric elliptic fixed points in the case of p:q resonances with odd $q\geqslant 3$. We consider the case where the initial area-preserving map $\bar z =\lambda z + Q(z,z^*)$ possesses the central symmetry, i. e., is invariant under the change of variables $z\to -z$, $z^*\to -z^*$. We construct normal forms for such maps in the case $\lambda = e^{i 2\pi \frac{p}{q}}$, where $p$ and $q$ are mutually prime integer numbers, $p\leqslant q$ and $q$ is odd, and study local bifurcations of the fixed point $z=0$ in various settings. We prove the appearance of garlands consisting of four $q$-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative ({contain} symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).
Keywords: bifurcation, central symmetry, elliptic orbits, $p$:$q$ resonance
Funding agency Grant number
Ministerio de Ciencia e Innovación de España PID2021-125535NB-I00
Federación Española de Enfermedades Raras 2021-SGR-01072
The author acknowledges the Serra Húnter program, the Spanish grant PID2021-125535NB-I00 (MICINN/AEI/FEDER, UE), and the Catalan grant 2021-SGR-01072.
Received: 11.11.2023
Accepted: 03.01.2024
Document Type: Article
MSC: 37G05, 37G10
Language: English
Citation: Marina S. Gonchenko
Citation in format AMSBIB
\Bibitem{Gon24}
\by Marina S. Gonchenko
\mathnet{http://mi.mathnet.ru/rcd1243}
\crossref{https://doi.org/10.1134/S1560354724010039}
Linking options:
  • https://www.mathnet.ru/eng/rcd1243
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:55
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025