Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2023, Volume 28, Issue 4-5, Pages 756–762
DOI: https://doi.org/10.1134/S1560354723040147
(Mi rcd1231)
 

Special Issue: On the 80th birthday of professor A. Chenciner

The Siegel – Bruno Linearization Theorem

Patrick Bernard

PSL Research University, Université Paris-Dauphine, CEREMADE (UMR CNRS 7534), 75775 PARIS CEDEX 16, France
References:
Abstract: The purpose of this paper is a pedagogical one. We provide a short and self- contained account of Siegel’s theorem, as improved by Bruno, which states that a holomorphic map of the complex plane can be locally linearized near a fixed point under certain conditions on the multiplier. The main proof is adapted from Bruno’s work.
Keywords: linearization, normal forms.
Received: 25.02.2023
Accepted: 07.09.2023
Document Type: Article
MSC: 37G05, 37F05, 37C15
Language: English
Citation: Patrick Bernard, “The Siegel – Bruno Linearization Theorem”, Regul. Chaotic Dyn., 28:4-5 (2023), 756–762
Citation in format AMSBIB
\Bibitem{Ber23}
\by Patrick Bernard
\paper The Siegel – Bruno Linearization Theorem
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 4-5
\pages 756--762
\mathnet{http://mi.mathnet.ru/rcd1231}
\crossref{https://doi.org/10.1134/S1560354723040147}
Linking options:
  • https://www.mathnet.ru/eng/rcd1231
  • https://www.mathnet.ru/eng/rcd/v28/i4/p756
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:56
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024