Abstract:
For n bodies moving in Euclidean d-space under the influence of a
homogeneous pair interaction we
compactify every center of mass energy surface, obtaining a
(2d(n−1)−1)-dimensional manifold with corners in the sense of Melrose.
After a time change, the flow on this manifold is globally defined
and nontrivial on the boundary.
\Bibitem{KnaMon23}
\by Andreas Knauf, Richard Montgomery
\paper Compactification of the Energy Surfaces for $n$ Bodies
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 4-5
\pages 628--658
\mathnet{http://mi.mathnet.ru/rcd1225}
\crossref{https://doi.org/10.1134/S1560354723040081}
Linking options:
https://www.mathnet.ru/eng/rcd1225
https://www.mathnet.ru/eng/rcd/v28/i4/p628
This publication is cited in the following 2 articles:
Ivan Bizyaev, “Classification of the trajectories of uncharged particles in the Schwarzschild-Melvin metric”, Phys. Rev. D, 110:10 (2024)
Pau Mir, Eva Miranda, Pablo Nicolás, “Hamiltonian facets of classical gauge theories on E-manifolds”, J. Phys. A: Math. Theor., 56:23 (2023), 235201