Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2023, Volume 28, Issue 4-5, Pages 543–560
DOI: https://doi.org/10.1134/S1560354723040032
(Mi rcd1220)
 

This article is cited in 5 scientific papers (total in 5 papers)

Special Issue: On the 80th birthday of professor A. Chenciner

Hamiltonian Paradifferential Birkhoff Normal Form for Water Waves

Massimiliano Bertia, Alberto Masperoa, Federico Murganteab

a SISSA, Via Bonomea 265, 34136 Trieste, Italy
b Universita degli studi di Trieste, Dipartimento di Matematica e Geoscienze, Via Valerio 12/1, 34127 Trieste, Italy
Citations (5)
References:
Abstract: We present the almost global in time existence result in [13] of small amplitude space periodic solutions of the 1D gravity-capillary water waves equations with constant vorticity and we describe the ideas of proof. This is based on a novel Hamiltonian paradifferential Birkhoff normal form approach for quasi-linear PDEs.
Keywords: water waves equations, vorticity, Hamiltonian Birkhoff normal form, paradifferential calculus.
Funding agency Grant number
PRIN 2020XB3EFL001
Research supported by PRIN 2020 (2020XB3EFL001) ''Hamiltonian and dispersive PDEs''.
Received: 28.02.2023
Accepted: 24.07.2023
Document Type: Article
MSC: 76B15, 37K55, 37J40
Language: English
Citation: Massimiliano Berti, Alberto Maspero, Federico Murgante, “Hamiltonian Paradifferential Birkhoff Normal Form for Water Waves”, Regul. Chaotic Dyn., 28:4-5 (2023), 543–560
Citation in format AMSBIB
\Bibitem{BerMasMur23}
\by Massimiliano Berti, Alberto Maspero, Federico Murgante
\paper Hamiltonian Paradifferential Birkhoff Normal Form for Water Waves
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 4-5
\pages 543--560
\mathnet{http://mi.mathnet.ru/rcd1220}
\crossref{https://doi.org/10.1134/S1560354723040032}
Linking options:
  • https://www.mathnet.ru/eng/rcd1220
  • https://www.mathnet.ru/eng/rcd/v28/i4/p543
  • This publication is cited in the following 5 articles:
    1. Massimiliano Berti, Scipio Cuccagna, Francisco Gancedo, Stefano Scrobogna, “Paralinearization and extended lifespan for solutions of the α-SQG sharp front equation”, Advances in Mathematics, 460 (2025), 110034  crossref
    2. Lizhe Wan, “Low regularity well-posedness for two-dimensional deep gravity water waves with constant vorticity”, Communications in Partial Differential Equations, 2025, 1  crossref
    3. Thomas Alazard, Oberwolfach Seminars, 54, Free Boundary Problems in Fluid Dynamics, 2024, 1  crossref
    4. Riccardo Montalto, Federico Murgante, Stefano Scrobogna, “Quadratic Lifespan for the Sublinear αα-SQG Sharp Front Problem”, J Dyn Diff Equat, 2024  crossref
    5. Massimiliano Berti, Alberto Maspero, Federico Murgante, “Hamiltonian Paradifferential Birkhoff Normal Form for Water Waves”, Regul. Chaotic Dyn., 28:4 (2023), 543–560  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:66
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025