Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 4, Pages 394–424
DOI: https://doi.org/10.1134/S1560354713040060
(Mi rcd120)
 

This article is cited in 10 scientific papers (total in 10 papers)

On a Class of Integrable Systems with a Quartic First Integral

Galliano Valentabc

a Laboratoire de Physique Théorique et des Hautes Energies, Unité associée au CNRS UMR 7589, 2 Place Jussieu, 75251 Paris Cedex 05, France
b Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France
c Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France
Citations (10)
References:
Abstract: We generalize, to some extent, the results on integrable geodesic flows on two dimensional manifolds with a quartic first integral in the framework laid down by Selivanova and Hadeler. The local structure is first determined by a direct integration of the differential system which expresses the conservation of the quartic observable and is seen to involve a finite number of parameters. The global structure is studied in some detail and leads to a class of models on the manifolds S2, H2 or R2. As special cases we recover Kovalevskaya’s integrable system and a generalization of it due to Goryachev.
Keywords: integrable Hamiltonian systems, quartic polynomial integral, manifolds for Riemannian metrics.
Received: 22.04.2013
Accepted: 28.06.2013
Bibliographic databases:
Document Type: Article
MSC: 70H06, 70H20, 58D17
Language: English
Citation: Galliano Valent, “On a Class of Integrable Systems with a Quartic First Integral”, Regul. Chaotic Dyn., 18:4 (2013), 394–424
Citation in format AMSBIB
\Bibitem{Val13}
\by Galliano Valent
\paper On a Class of Integrable Systems with a Quartic First Integral
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 4
\pages 394--424
\mathnet{http://mi.mathnet.ru/rcd120}
\crossref{https://doi.org/10.1134/S1560354713040060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3090209}
\zmath{https://zbmath.org/?q=an:1274.70024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322878100006}
Linking options:
  • https://www.mathnet.ru/eng/rcd120
  • https://www.mathnet.ru/eng/rcd/v18/i4/p394
  • This publication is cited in the following 10 articles:
    1. Szuminski W. Maciejewski A.J., “Comment on “on the Integrability of 2D Hamiltonian Systems With Variable Gaussian Curvature” By a. a. Elmandouh”, Nonlinear Dyn., 104:2 (2021), 1443–1450  crossref  isi  scopus
    2. W. Szuminski, “Integrability analysis of natural Hamiltonian systems in curved spaces”, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 246–255  crossref  mathscinet  isi  scopus
    3. Andrey V. Tsiganov, “Bäcklund Transformations for the Nonholonomic Veselova System”, Regul. Chaotic Dyn., 22:2 (2017), 163–179  mathnet  crossref
    4. Andrey V. Tsiganov, “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367  mathnet  crossref
    5. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Generalizations of the Kovalevskaya case and quaternions”, Proc. Steklov Inst. Math., 295 (2016), 33–44  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Galliano Valent, “Global Structure and Geodesics for Koenigs Superintegrable Systems”, Regul. Chaotic Dyn., 21:5 (2016), 477–509  mathnet  crossref
    7. A. V. Tsyganov, “Razdelenie peremennykh dlya odnogo obobscheniya sistemy Chaplygina na sfere”, Nelineinaya dinam., 11:1 (2015), 179–185  mathnet  elib
    8. A. V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99  crossref  mathscinet  zmath  isi  scopus
    9. G. Valent, Ch. Duval, V. Shevchishin, “Explicit metrics for a class of two-dimensional cubically superintegrable systems”, J. Geom. Phys., 87 (2015), 461–481  crossref  mathscinet  zmath  isi  scopus
    10. A. Galajinsky, O. Lechtenfeld, “On two-dimensional integrable models with a cubic or quartic integral of motion”, J. High Energy Phys., 2013, no. 9, 113  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:142
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025