Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2022, Volume 27, Issue 6, Pages 629–646
DOI: https://doi.org/10.1134/S156035472206003X
(Mi rcd1184)
 

Alexey Borisov Memorial Volume

Morse – Smale Inequalities and Chafee – Infante Attractors

Leonardo Pires

State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748 Ponta Grossa PR, Brazil
References:
Abstract: In this paper, we are concerned with the shape of the attractor $\mathcal{A}^\lambda$ of the scalar Chafee – Infante equation. We construct a Morse – Smale vector field in the disk $\mathbb{D}^k$ topologically equivalent to infinite-dimensional dynamics of the Chafee – Infante equation. As a consequence, we obtain geometric properties of $\mathcal{A}^\lambda$ using the Morse – Smale inequalities.
Keywords: Morse – Smale systems, Chafee – Infante equation, Morse inequalities.
Received: 26.04.2022
Accepted: 05.10.2022
Bibliographic databases:
Document Type: Article
Language: English
Citation: Leonardo Pires, “Morse – Smale Inequalities and Chafee – Infante Attractors”, Regul. Chaotic Dyn., 27:6 (2022), 629–646
Citation in format AMSBIB
\Bibitem{Pir22}
\by Leonardo Pires
\paper Morse – Smale Inequalities and Chafee – Infante Attractors
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 6
\pages 629--646
\mathnet{http://mi.mathnet.ru/rcd1184}
\crossref{https://doi.org/10.1134/S156035472206003X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4519670}
Linking options:
  • https://www.mathnet.ru/eng/rcd1184
  • https://www.mathnet.ru/eng/rcd/v27/i6/p629
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:76
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024