Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2022, Volume 27, Issue 1, Pages 18–23
DOI: https://doi.org/10.1134/S156035472201004X
(Mi rcd1150)
 

Remarks on Rigidity Properties of Conics

Serge Tabachnikov

Department of Mathematics, Pennsylvania State University, University Park, 16802 PA, USA
References:
Abstract: Inspired by the recent results toward Birkhoff conjecture (a rigidity property of billiards in ellipses), we discuss two rigidity properties of conics. The first one concerns symmetries of an analog of polar duality associated with an oval, and the second concerns properties of the circle map associated with an oval and two pencils of lines.
Keywords: conics, polar duality, rigidity, circle maps, chess billiards.
Funding agency Grant number
National Science Foundation DMS-2005444
The author was supported by NSF grant DMS-2005444.
Received: 17.10.2021
Accepted: 16.12.2021
Bibliographic databases:
Document Type: Article
MSC: 53A20, 37E10
Language: English
Citation: Serge Tabachnikov, “Remarks on Rigidity Properties of Conics”, Regul. Chaotic Dyn., 27:1 (2022), 18–23
Citation in format AMSBIB
\Bibitem{Tab22}
\by Serge Tabachnikov
\paper Remarks on Rigidity Properties of Conics
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 1
\pages 18--23
\mathnet{http://mi.mathnet.ru/rcd1150}
\crossref{https://doi.org/10.1134/S156035472201004X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4376696}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000751378200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124408352}
Linking options:
  • https://www.mathnet.ru/eng/rcd1150
  • https://www.mathnet.ru/eng/rcd/v27/i1/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024