Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2021, Volume 26, Issue 3, Pages 293–304
DOI: https://doi.org/10.1134/S1560354721030060
(Mi rcd1116)
 

Generic Properties of Mañé's Setof Exact Magnetic Lagrangians

Alexandre Rocha

Instituto de Ciências Exatas e Tecnológicas/UFV, 35.690-000 Campus Florestal-MG, Brazil
References:
Abstract: Let $M$ be a closed manifold and $L$ an exact magnetic Lagrangian. In this paper we prove that there exists a residual set $\mathcal{G}$ of $ H^{1}\left( M;\mathbb{R}\right)$ such that the property
\begin{equation*} {\widetilde{\mathcal{M}}}\left( c\right) ={\widetilde{\mathcal{A}}}\left( c\right) ={\widetilde{\mathcal{N}}}\left( c\right), \forall c\in \mathcal{G}, \end{equation*}
with ${\widetilde{\mathcal{M}}}\left( c\right)$ supporting a uniquely ergodic measure, is generic in the family of exact magnetic Lagrangians. We also prove that, for a fixed cohomology class $c$, there exists a residual set of exact magnetic Lagrangians such that, when this unique measure is supported on a periodic orbit, this orbit is hyperbolic and its stable and unstable manifolds intersect transversally. This result is a version of an analogous theorem, for Tonelli Lagrangians, proven in [6].
Keywords: exact magnetic Lagrangian, Mañé set, genericity.
Received: 17.11.2020
Accepted: 21.04.2021
Bibliographic databases:
Document Type: Article
MSC: 37J50,70H09
Language: English
Citation: Alexandre Rocha, “Generic Properties of Mañé's Setof Exact Magnetic Lagrangians”, Regul. Chaotic Dyn., 26:3 (2021), 293–304
Citation in format AMSBIB
\Bibitem{Roc21}
\by Alexandre Rocha
\paper Generic Properties of Ma\~{n}\'{e}'s Set\\ of Exact Magnetic Lagrangians
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 3
\pages 293--304
\mathnet{http://mi.mathnet.ru/rcd1116}
\crossref{https://doi.org/10.1134/S1560354721030060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4268338}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000657859300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107149712}
Linking options:
  • https://www.mathnet.ru/eng/rcd1116
  • https://www.mathnet.ru/eng/rcd/v26/i3/p293
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:72
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024