Abstract:
For the curved nn-body problem, we show that the set of ordinary central configurations is away from singular configurations in H3 with positive momentum of inertia, and away from a subset of singular
configurations in S3. We also show that
each of the n!/2 geodesic ordinary central configurations for n masses has Morse index n−2.
Then we get a direct corollary that there are at least (3n−4)(n−1)!2 ordinary central
configurations for given n masses if all ordinary central configurations of these masses are nondegenerate.
Citation:
Shuqiang Zhu, “Compactness and Index of Ordinary Central Configurations for
the Curved N-Body Problem”, Regul. Chaotic Dyn., 26:3 (2021), 236–257
\Bibitem{Zhu21}
\by Shuqiang Zhu
\paper Compactness and Index of Ordinary Central Configurations for
the Curved $N$-Body Problem
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 3
\pages 236--257
\mathnet{http://mi.mathnet.ru/rcd1113}
\crossref{https://doi.org/10.1134/S1560354721030035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4268335}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000657859300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107218764}
Linking options:
https://www.mathnet.ru/eng/rcd1113
https://www.mathnet.ru/eng/rcd/v26/i3/p236
This publication is cited in the following 2 articles:
Zhu Sh., “Dziobek Equilibrium Configurations on a Sphere”, J. Dyn. Differ. Equ., 34:2 (2022), 1269–1283
Antonio Hernández-Garduño, Ernesto Pérez-Chavela, Shuqiang Zhu, “Stability of Regular Polygonal Relative Equilibria on S2”, J Nonlinear Sci, 32:5 (2022)