Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 3, Pages 226–236
DOI: https://doi.org/10.1134/S1560354713030039
(Mi rcd111)
 

This article is cited in 4 scientific papers (total in 4 papers)

High Frequency Behavior of a Rolling Ball and Simplification of the Separation Equation

Nils Rutstam

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Citations (4)
References:
Abstract: The Chaplygin separation equation for a rolling axisymmetric ball has an algebraic expression for the effective potential $V(z=\cos\theta, D, \lambda)$ that is difficult to analyze. We simplify this expression for the potential and find a 2-parameter family for when the potential becomes a rational function of $z=\cos\theta$. Then this separation equation becomes similar to the separation equation for the heavy symmetric top. For nutational solutions of a rolling sphere, we study a high frequency $\omega_3$-dependence of the width of the nutational band, the depth of motion above $V(z_{min}, D, \lambda)$ and the $\omega_3$-dependence of nutational frequency $\frac{2\pi}{T}$.
Keywords: rigid body, rolling sphere, integrals of motion, elliptic integrals, tippe top.
Received: 13.04.2012
Accepted: 22.04.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nils Rutstam, “High Frequency Behavior of a Rolling Ball and Simplification of the Separation Equation”, Regul. Chaotic Dyn., 18:3 (2013), 226–236
Citation in format AMSBIB
\Bibitem{Rut13}
\by Nils Rutstam
\paper High Frequency Behavior of a Rolling Ball and Simplification of the Separation Equation
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 3
\pages 226--236
\mathnet{http://mi.mathnet.ru/rcd111}
\crossref{https://doi.org/10.1134/S1560354713030039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3061807}
\zmath{https://zbmath.org/?q=an:1273.70008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319763900003}
Linking options:
  • https://www.mathnet.ru/eng/rcd111
  • https://www.mathnet.ru/eng/rcd/v18/i3/p226
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:132
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024