Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2021, Volume 26, Issue 1, Pages 61–88
DOI: https://doi.org/10.1134/S1560354721010044
(Mi rcd1102)
 

This article is cited in 3 scientific papers (total in 3 papers)

V. I.Arnold’s “Global” KAM Theorem and Geometric Measure Estimates

Luigi Chierchiaa, Comlan E. Koudjinanb

a Dipartimento di Matematica e Fisica, Università “Roma Tre”, Largo San Leonardo Murialdo 1, I-00146 Roma, Italy
b Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
Citations (3)
References:
Abstract: This paper continues the discussion started in [10] concerning Arnold's legacy on classical KAM theory and (some of) its modern developments. We prove a detailed and explicit “global” Arnold's KAM theorem, which yields, in particular, the Whitney conjugacy of a non-degenerate, real-analytic, nearly-integrable Hamiltonian system to an integrable system on a closed, nowhere dense, positive measure subset of the phase space. Detailed measure estimates on the Kolmogorov set are provided in case the phase space is: (A) a uniform neighbourhood of an arbitrary (bounded) set times the $d$-torus and (B) a domain with $C^2$ boundary times the $d$-torus. All constants are explicitly given.
Keywords: nearly-integrable Hamiltonian systems, perturbation theory, KAM theory, Arnold’s scheme, Kolmogorov set, primary invariant tori, Lagrangian tori, measure estimates, small divisors, integrability on nowhere dense sets, Diophantine frequencies.
Received: 26.10.2020
Accepted: 04.01.2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Luigi Chierchia, Comlan E. Koudjinan, “V. I.Arnold’s “Global” KAM Theorem and Geometric Measure Estimates”, Regul. Chaotic Dyn., 26:1 (2021), 61–88
Citation in format AMSBIB
\Bibitem{ChiKou21}
\by Luigi Chierchia, Comlan E. Koudjinan
\paper V. I.Arnold’s “Global” KAM Theorem and Geometric Measure
Estimates
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 1
\pages 61--88
\mathnet{http://mi.mathnet.ru/rcd1102}
\crossref{https://doi.org/10.1134/S1560354721010044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4209918}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614454700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100328756}
Linking options:
  • https://www.mathnet.ru/eng/rcd1102
  • https://www.mathnet.ru/eng/rcd/v26/i1/p61
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:95
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024