Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 2, Pages 162–184
DOI: https://doi.org/10.1134/S1560354714020026
(Mi rcd108)
 

This article is cited in 13 scientific papers (total in 13 papers)

Systems of Kowalevski Type and Discriminantly Separable Polynomials

Vladimir Dragovićab, Katarina Kukićc

a Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
b The Department of Mathematical Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080, USA
c Faculty for Traffic and Transport Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia
Citations (13)
References:
Abstract: Starting from the notion of discriminantly separable polynomials of degree two in each of three variables, we construct a class of integrable dynamical systems. These systems can be integrated explicitly in genus two theta-functions in a procedure which is similar to the classical one for the Kowalevski top. The discriminantly separable polynomials play the role of the Kowalevski fundamental equation. Natural examples include the Sokolov systems and the Jurdjevic elasticae.
Keywords: integrable systems, Kowalevski top, discriminantly separable polynomials, systems of Kowalevski type.
Funding agency Grant number
Serbian Ministry of Science and Technological Development 174020
The research was partially supported by the Serbian Ministry of Science and Technological Development, Project 174020 Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems.
Received: 30.08.2013
Accepted: 09.11.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vladimir Dragović, Katarina Kukić, “Systems of Kowalevski Type and Discriminantly Separable Polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184
Citation in format AMSBIB
\Bibitem{DraKuk14}
\by Vladimir~Dragovi\'c, Katarina~Kuki{\'c}
\paper Systems of Kowalevski Type and Discriminantly Separable Polynomials
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 2
\pages 162--184
\mathnet{http://mi.mathnet.ru/rcd108}
\crossref{https://doi.org/10.1134/S1560354714020026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3189255}
\zmath{https://zbmath.org/?q=an:06392318}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334198000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898724479}
Linking options:
  • https://www.mathnet.ru/eng/rcd108
  • https://www.mathnet.ru/eng/rcd/v19/i2/p162
  • This publication is cited in the following 13 articles:
    1. Velimir Jurdjevic, “Integrable Systems: In the Footprints of the Greats”, Mathematics, 11:4 (2023), 1063  crossref
    2. Jurdjevic V., “Kowalewski TOP and Complex Lie Algebras”, Anal. Math. Phys., 11:4 (2021), 173  crossref  mathscinet  isi  scopus
    3. Vladimir Dragović, Milena Radnović, “Caustics of Poncelet Polygons and Classical Extremal Polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35  mathnet  crossref
    4. Anani Komla Adabrah, Vladimir Dragović, Milena Radnović, “Periodic Billiards Within Conics in the Minkowski Plane and Akhiezer Polynomials”, Regul. Chaotic Dyn., 24:5 (2019), 464–501  mathnet  crossref  mathscinet
    5. V. M. Buchstaber, V. I. Dragovich, “Two-Valued Groups, Kummer Varieties, and Integrable Billiards”, Arnold Math. J., 4:1 (2018), 27–57  mathnet  crossref  scopus
    6. Vladimir Dragovich, Katarina Kukić, “Discriminantly separable polynomials and the generalized Kowalevski top”, Theor. Appl. Mech., 44:2 (2017), 229–236  mathnet  crossref
    7. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
    8. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Generalizations of the Kovalevskaya case and quaternions”, Proc. Steklov Inst. Math., 295 (2016), 33–44  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Vladimir Dragović, Borislav Gajić, “Some Recent Generalizations of the Classical Rigid Body Systems”, Arnold Math J., 2:4 (2016), 511  crossref
    10. P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317  mathnet
    11. Vladimir Dragović, Katarina Kukić, Springer Proceedings in Physics, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 49  crossref
    12. V. Dragovic, K. Kukic, “Discriminantly separable polynomials and quad-equations”, J. Geom. Mech., 6:3 (2014), 319–333  crossref  mathscinet  zmath  isi  scopus
    13. V. Dragovic, K. Kukic, “Role of discriminantly separable polynomials in integrable dynamical systems”, Tim 2013 Physics Conference, AIP Conf. Proc., 1634, eds. O. Bunoiu, N. Avram, A. Popescu, Amer. Inst. Phys., 2014, 3–8  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:283
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025