|
This article is cited in 6 scientific papers (total in 6 papers)
Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit
José Laudelino de Menezes Netoa, Hildeberto E. Cabralb a Departamento de Ciências Exatas, Universidade Federal da Paraíba,
58297-000 Rio Tinto, Brazil
b Departamento de Matemática, Universidade Federal de Pernambuco,
50670-901 Recife, Brazil
Abstract:
We study the dynamics of a simple pendulum attached to the center of mass of a satellite in an elliptic orbit. We consider the case where the pendulum lies in the orbital plane of the satellite. We find two linearly stable equilibrium positions for the Hamiltonian system describing the problem and study their parametric stability by constructing the boundary curves of the stability/instability regions.
Keywords:
pendulum, parametric stability.
Received: 14.12.2019 Accepted: 15.05.2020
Citation:
José Laudelino de Menezes Neto, Hildeberto E. Cabral, “Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit”, Regul. Chaotic Dyn., 25:4 (2020), 323–329
Linking options:
https://www.mathnet.ru/eng/rcd1067 https://www.mathnet.ru/eng/rcd/v25/i4/p323
|
Statistics & downloads: |
Abstract page: | 127 | References: | 34 |
|