Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 2, Pages 178–198
DOI: https://doi.org/10.1134/S1560354720020045
(Mi rcd1058)
 

This article is cited in 8 scientific papers (total in 8 papers)

Revisiting the Human and Nature Dynamics Model

Basil Grammaticosa, Ralph Willoxb, Junkichi Satsumac

a IMNC, CNRS, Université Paris-Diderot, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
b Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8914 Tokyo, Japan
c Department of Mathematical Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, 135-8181 Tokyo, Japan
Citations (8)
References:
Abstract: We present a simple model for describing the dynamics of the interaction between a homogeneous population or society, and the natural resources and reserves that the society needs for its survival. The model is formulated in terms of ordinary differential equations, which are subsequently discretised, the discrete system providing a natural integrator for the continuous one. An ultradiscrete, generalised cellular automaton-like, model is also derived. The dynamics of our simple, three-component, model are particularly rich exhibiting either a route to a steady state or an oscillating, limit cycle-type regime or to a collapse. While these dynamical behaviours depend strongly on the choice of the details of the model, the important conclusion is that a collapse or near collapse, leading to the disappearance of the population or to a complete transfiguration of its societal model, is indeed possible.
Keywords: population dynamics, dynamical systems, collapse, resources and reserves, discretisation, generalised cellular automaton.
Funding agency Grant number
Japan Society for the Promotion of Science 18K03355
R. Willox would like to acknowledge support from the Japan Society for the Promotion of Science (JSPS), through the JSPS grant: KAKENHI grant number 18K03355.
Received: 30.10.2019
Accepted: 02.03.2020
Bibliographic databases:
Document Type: Article
MSC: 37M99, 39A30, 91C99
Language: English
Citation: Basil Grammaticos, Ralph Willox, Junkichi Satsuma, “Revisiting the Human and Nature Dynamics Model”, Regul. Chaotic Dyn., 25:2 (2020), 178–198
Citation in format AMSBIB
\Bibitem{GraWilSat20}
\by Basil Grammaticos, Ralph Willox, Junkichi Satsuma
\paper Revisiting the Human and Nature Dynamics Model
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 2
\pages 178--198
\mathnet{http://mi.mathnet.ru/rcd1058}
\crossref{https://doi.org/10.1134/S1560354720020045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524953000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083092615}
Linking options:
  • https://www.mathnet.ru/eng/rcd1058
  • https://www.mathnet.ru/eng/rcd/v25/i2/p178
  • This publication is cited in the following 8 articles:
    1. M. Badiale, I. Cravero, “A HANDY-type model with non renewable resources”, Nonlinear Analysis: Real World Applications, 77 (2024), 104071  crossref
    2. Marino Badiale, Isabella Cravero, “A Nonlinear ODE Model for a Consumeristic Society”, Mathematics, 12:8 (2024), 1253  crossref
    3. F. Meloni, G. M. Nakamura, B. Grammaticos, A. S. Martinez, M. Badoual, “Modeling Cooperation and Competition in Biological Communities”, Rus. J. Nonlin. Dyn., 19:3 (2023), 333–358  mathnet  crossref
    4. Meir Shillor, Thanaa Ali Kadhim, “Analysis and simulations of the HANDY model with social mobility, renewables and nonrenewables”, ejde, 2023:01-?? (2023), 59  crossref
    5. Gilberto Nakamura, Basil Grammaticos, Mathilde Badoual, “Recruitment Effects on the Evolution of Epidemics in a Simple SIR Model”, Regul. Chaotic Dyn., 26:3 (2021), 305–319  mathnet  crossref  mathscinet
    6. G. Nakamura, S. Plaszczynski, B. Grammaticos, M. Badoual, “Modelling the Effect of Virulent Variants with SIR”, Rus. J. Nonlin. Dyn., 17:4 (2021), 475–490  mathnet  crossref
    7. G Nakamura, B Grammaticos, M Badoual, “Vaccination strategies for a seasonal epidemic: a simple SIR model”, Open Communications in Nonlinear Mathematical Physics, Volume 1 (2021)  crossref
    8. Gilberto Nakamura, Basil Grammaticos, Mathilde Badoual, “Confinement Strategies in a Simple SIR Model”, Regul. Chaotic Dyn., 25:6 (2020), 509–521  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:159
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025