|
This article is cited in 4 scientific papers (total in 4 papers)
On the Nonlinear Stability of the Triangular Points in the Circular Spatial Restricted Three-body Problem
Daniela Cárcamo-Díaza, Jesús F. Palaciánb, Claudio Vidal, Patricia Yanguas a Universidad del Bío-Bío,
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA,
Departamento de Matemática, Facultad de Ciencias,
Concepción, VIII Región, Chile
b Universidad Pública de Navarra, Departamento de Estadística, Informática y Matemáticas
and Institute for Advanced Materials and Mathematics,
Campus de Arrosadia, 31006 Pamplona, Spain
Abstract:
The well-known problem of the nonlinear stability of $L_4$ and $L_5$ in the circular spatial restricted three-body problem is revisited. Some new results in the light of the concept of Lie (formal) stability are presented. In particular, we provide stability and asymptotic estimates for three specific values of the mass ratio that remained uncovered. Moreover, in many cases we improve the estimates found in the literature.
Keywords:
restricted three-body problem, $L_4$ and $L_5$, elliptic equilibria, resonances, formal and Lie stability, exponential estimates.
Received: 09.08.2019 Accepted: 25.01.2020
Citation:
Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas, “On the Nonlinear Stability of the Triangular Points in the Circular Spatial Restricted Three-body Problem”, Regul. Chaotic Dyn., 25:2 (2020), 131–148
Linking options:
https://www.mathnet.ru/eng/rcd1055 https://www.mathnet.ru/eng/rcd/v25/i2/p131
|
Statistics & downloads: |
Abstract page: | 196 | References: | 33 |
|