Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 1, Pages 78–110
DOI: https://doi.org/10.1134/S1560354720010086
(Mi rcd1051)
 

This article is cited in 1 scientific paper (total in 1 paper)

Special issue: In honor of Valery Kozlov for his 70th birthday

$N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics

Jaime Andradea, Stefanella Boattobc, Thierry Combotd, Gladston Duartecb, Teresinha J. Stuchie

a Departamento de Matemática, Facutad de Ciencias, Universidad del Bıi o-Bıi o, Casilla 5-C, Concepción, VIII-región, Chile
b Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal de Rio de Janeiro, 68530, Rio de Janeiro, RJ, Brazil
c Barcelona Graduate School of Mathematics \& Departament de Matemàtiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
d Institut de Mathématiques de Bourgogne, Université de Bourgogne, 21078, Dijon, France
e Departamento de Fıisica-Matemática, Instituto de Fıisica, Universidade Federal de Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Citations (1)
References:
Abstract: The formulation of the dynamics of $N$-bodies on the surface of an infinite cylinder is considered. We have chosen such a surface to be able to study the impact of the surface’s topology in the particle’s dynamics. For this purpose we need to make a choice of how to generalize the notion of gravitational potential on a general manifold. Following Boatto, Dritschel and Schaefer [5], we define a gravitational potential as an attractive central force which obeys Maxwell’s like formulas.
As a result of our theoretical differential Galois theory and numerical study — Poincaré sections, we prove that the two-body dynamics is not integrable. Moreover, for very low energies, when the bodies are restricted to a small region, the topological signature of the cylinder is still present in the dynamics. A perturbative expansion is derived for the force between the two bodies. Such a force can be viewed as the planar limit plus the topological perturbation. Finally, a polygonal configuration of identical masses (identical charges or identical vortices) is proved to be an unstable relative equilibrium for all $N>2$.
Keywords: $N$-body problem, Hodge decomposition, central forces on manifolds, topology and integrability, differential Galois theory, Poincaré sections, stability of relative equilibria.
Funding agency Grant number
Comisión Nacional de Investigación Científica y Tecnológica 11180776
Jaime Andrade was partially supported by CONICYT (Chile) through FONDECYT project 11180776. Stefanella Boatto was partially supported by the Luís Santaló Visiting Professor fellowship through CRM (Catalonia, Spain). Gladston Duarte was partially supported by a scholarship from the Coordenacão de Aperfeicoamento de Pessoal de Ensino Superior (CAPES, Brazil), through the Graduate Program (Programa de Pos-graduacão) of the Mathematical Institute of the Federal University of Rio de Janeiro, and by the María de Maeztu Unit of Excellence in Research Program (MTM-2014-0445) through the Barcelona Graduate School of Mathematics (BGSMath).
Received: 24.12.2019
Accepted: 10.01.2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jaime Andrade, Stefanella Boatto, Thierry Combot, Gladston Duarte, Teresinha J. Stuchi, “$N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics”, Regul. Chaotic Dyn., 25:1 (2020), 78–110
Citation in format AMSBIB
\Bibitem{AndBoaCom20}
\by Jaime Andrade, Stefanella Boatto, Thierry Combot, Gladston Duarte, Teresinha J. Stuchi
\paper $N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 1
\pages 78--110
\mathnet{http://mi.mathnet.ru/rcd1051}
\crossref{https://doi.org/10.1134/S1560354720010086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515001300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079821983}
Linking options:
  • https://www.mathnet.ru/eng/rcd1051
  • https://www.mathnet.ru/eng/rcd/v25/i1/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:329
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024