Loading [MathJax]/jax/output/CommonHTML/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 1-2, Pages 194–201
DOI: https://doi.org/10.1134/S1560354713010140
(Mi rcd105)
 

This article is cited in 13 scientific papers (total in 13 papers)

Vortex Pairs and Dipoles

Stefan G. Llewellyn Smitha, Raymond J. Nagemb

a Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, 9500 Gilman Drive, La Jolla CA 92093-0411, USA
b Department of Mechanical Engineering, Boston University, Boston MA 02215, USA
Citations (13)
References:
Abstract: Point vortices have been extensively studied in vortex dynamics. The generalization to higher singularities, starting with vortex dipoles, is not so well understood.We obtain a family of equations of motion for inviscid vortex dipoles and discuss limitations of the concept.We then investigate viscous vortex dipoles, using two different formulations to obtain their propagation velocity. We also derive an integro-differential for the motion of a viscous vortex dipole parallel to a straight boundary.
Keywords: vortex pair, vortex dipole.
Funding agency Grant number
National Science Foundation CTS-01133978
SGLS was supported by NSF grant CTS-01133978.
Received: 05.09.2012
Accepted: 26.02.2013
Bibliographic databases:
Document Type: Article
MSC: 76B47, 76D17
Language: English
Citation: Stefan G. Llewellyn Smith, Raymond J. Nagem, “Vortex Pairs and Dipoles”, Regul. Chaotic Dyn., 18:1-2 (2013), 194–201
Citation in format AMSBIB
\Bibitem{LleNag13}
\by Stefan G. Llewellyn Smith, Raymond J. Nagem
\paper Vortex Pairs and Dipoles
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 194--201
\mathnet{http://mi.mathnet.ru/rcd105}
\crossref{https://doi.org/10.1134/S1560354713010140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040992}
\zmath{https://zbmath.org/?q=an:1273.76070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400014}
Linking options:
  • https://www.mathnet.ru/eng/rcd105
  • https://www.mathnet.ru/eng/rcd/v18/i1/p194
  • This publication is cited in the following 13 articles:
    1. A. I. Bulycheva, K. M. Kulik, V. V. Yanovsky, “Motion of a point dipole in a strip”, Phys. Rev. Fluids, 10:1 (2025)  crossref
    2. Björn Gustafsson, “Vortex Pairs and Dipoles on Closed Surfaces”, J Nonlinear Sci, 32:5 (2022)  crossref
    3. Morteza Sharifi, Behruz Raesi, “Vortex Theory for Two Dimensional Boussinesq Equations”, Applied Mathematics and Nonlinear Sciences, 5:2 (2020), 67  crossref
    4. Gustafsson B., “Vortex Motion and Geometric Function Theory: the Role of Connections”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 377:2158 (2019), 20180341  crossref  mathscinet  isi  scopus
    5. J. N. Reinaud, K. V. Koshel, E. A. Ryzhov, “Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation”, Phys. Fluids, 30:9 (2018), 096604  crossref  isi  scopus
    6. U. Habibah, H. Nakagawa, Ya. Fukumoto, “Finite-thickness effect on speed of a counter-rotating vortex pair at high Reynolds numbers”, Fluid Dyn. Res., 50:3 (2018), 031401  crossref  mathscinet  isi  scopus
    7. Eugene A. Ryzhov, Konstantin V. Koshel, “Parametric Instability of a Many Point-vortex System in a Multi-layer Flow Under Linear Deformation”, Regul. Chaotic Dyn., 21:3 (2016), 254–266  mathnet  crossref  mathscinet
    8. S. D. Peterson, M. Porfiri, “Energy exchange between coherent fluid structures and ionic polymer metal composites, toward flow sensing and energy harvesting”, Ionic Polymer Metal Composites (IPMCS): Smart Multi-Functional Materials and Artificial Muscles, v. 2, RSC Smart Materials, 18, ed. M. Shahinpoor, Royal Soc Chemistry, 2016, 1–18  isi
    9. E. Kanso, Tsang Alan Cheng Hou, “Pursuit and synchronization in hydrodynamic dipoles”, J. Nonlinear Sci., 25:5, SI (2015), 1141–1152  crossref  mathscinet  zmath  isi  scopus
    10. E. Kanso, Tsang Alan Cheng Hou, “Dipole models of self-propelled bodies”, Fluid Dyn. Res., 46:6 (2014), 061407  crossref  isi  scopus
    11. Yu. Matsumoto, K. Ueno, “A dynamical system of interacting dipoles in two-dimensional flows”, Fluid Dyn. Res., 46:3 (2014), 031413  crossref  mathscinet  zmath  isi  scopus
    12. Tsang Alan Cheng Hou, E. Kanso, “Dipole interactions in doubly periodic domains”, J. Nonlinear Sci., 23:6 (2013), 971–991  crossref  mathscinet  zmath  isi  scopus
    13. S. D. Peterson, M. Porfiri, “Impact of a vortex dipole with a semi-infinite rigid plate”, Phys. Fluids, 25:9 (2013), 093103  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:168
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025