Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 1, Pages 40–58
DOI: https://doi.org/10.1134/S1560354720010062
(Mi rcd1049)
 

This article is cited in 5 scientific papers (total in 5 papers)

Special issue: In honor of Valery Kozlov for his 70th birthday

On Dynamics of Jellet's Egg. Asymptotic Solutions Revisited

Stefan Rauch-Wojciechowskia, Maria Przybylskab

a Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
b Institute of Physics, University of Zielona Góra, ul. Licealna 9, PL-65-417, Zielona Góra, Poland
Citations (5)
References:
Abstract: We study here the asymptotic condition $\dot E=-\mu g_n\boldsymbol{v}_A^2=0$ for an eccentric rolling and sliding ellipsoid with axes of principal moments of inertia directed along geometric axes of the ellipsoid, a rigid body which we call here Jellett's egg (JE). It is shown by using dynamic equations expressed in terms of Euler angles that the asymptotic condition is satisfied by stationary solutions. There are 4 types of stationary solutions: tumbling, spinning, inclined rolling and rotating on the side solutions. In the generic situation of tumbling solutions concise explicit formulas for stationary angular velocities $\dot\varphi_{\mathrm{JE}}(\cos\theta)$, $\omega_{3\mathrm{JE}}(\cos\theta)$ as functions of JE parameters $\widetilde{\alpha},\alpha,\gamma$ are given. We distinguish the case $1-\widetilde{\alpha}<\alpha^2<1+\widetilde{\alpha}$, $1-\widetilde{\alpha}<\alpha^2\gamma<1+\widetilde{\alpha}$ when velocities $\dot\varphi_{\mathrm{JE}}$, $\omega_{3\mathrm{JE}}$ are defined for the whole range of inclination angles $\theta\in(0,\pi)$. Numerical simulations illustrate how, for a JE launched almost vertically with $\theta(0)=\tfrac{1}{100},\tfrac{1}{10}$, the inversion of the JE depends on relations between parameters.
Keywords: rigid body, nonholonomic mechanics, Jellett egg, tippe top.
Funding agency
S.R. and M. P. gratefully acknowledge support of Department of Mathematics of Linköping University and support of Stiftelse Magnusons fond, KVA.
Received: 07.10.2019
Accepted: 12.12.2019
Bibliographic databases:
Document Type: Article
Language: English
Citation: Stefan Rauch-Wojciechowski, Maria Przybylska, “On Dynamics of Jellet's Egg. Asymptotic Solutions Revisited”, Regul. Chaotic Dyn., 25:1 (2020), 40–58
Citation in format AMSBIB
\Bibitem{RauPrz20}
\by Stefan Rauch-Wojciechowski, Maria Przybylska
\paper On Dynamics of Jellet's Egg. Asymptotic Solutions Revisited
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 1
\pages 40--58
\mathnet{http://mi.mathnet.ru/rcd1049}
\crossref{https://doi.org/10.1134/S1560354720010062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515001300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079628494}
Linking options:
  • https://www.mathnet.ru/eng/rcd1049
  • https://www.mathnet.ru/eng/rcd/v25/i1/p40
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024