Abstract:
A (multidimensional) spherical periscope is a system of two ideal mirrors that reflect every ray of light emanating from some point back to this point. A spherical periscope defines a local diffeomorphism of the space of rays through this point, and we describe such diffeomorphisms. We also solve a similar problem for (multidimensional) reversed periscopes, the systems of two mirrors that reverse the direction of a parallel beam of light.
\Bibitem{Tab20}
\by Serge Tabachnikov
\paper Two Variations on the Periscope Theorem
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 1
\pages 11--17
\mathnet{http://mi.mathnet.ru/rcd1046}
\crossref{https://doi.org/10.1134/S1560354720010037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515001300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079800306}
Linking options:
https://www.mathnet.ru/eng/rcd1046
https://www.mathnet.ru/eng/rcd/v25/i1/p11
This publication is cited in the following 2 articles:
Elim Hicks, R. Andrew Hicks, Ron Perline, Sarah G. Rody, “Frobenius Integrability, Automotive Blind Spots, Non-reversing Mirrors, and Panoramic Mirrors”, The American Mathematical Monthly, 130:3 (2023), 251
Hicks R.A., Perline R.K., Rody S.G., “Anti-Eikonal Equation of An Eigenmirror”, J. Opt. Soc. Am. A-Opt. Image Sci. Vis., 37:10 (2020), 1566–1573