Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2019, Volume 24, Issue 6, Pages 717–724
DOI: https://doi.org/10.1134/S1560354719060091
(Mi rcd1035)
 

This article is cited in 11 scientific papers (total in 11 papers)

Twisted States in a System of Nonlinearly Coupled Phase Oscillators

Dmitry Bolotova, Maxim Bolotova, Lev Smirnovab, Grigory Osipova, Arkady Pikovskyca

a Department of Control Theory, Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
b Institute of Applied Physics, Russian Academy of Sciences, ul. Ul’yanova 46, Nizhny Novgorod, 603950 Russia
c Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
Citations (11)
References:
Abstract: We study the dynamics of the ring of identical phase oscillators with nonlinear nonlocal coupling. Using the Ott – Antonsen approach, the problem is formulated as a system of partial derivative equations for the local complex order parameter. In this framework, we investigate the existence and stability of twisted states. Both fully coherent and partially coherent stable twisted states were found (the latter ones for the first time for identical oscillators). We show that twisted states can be stable starting from a certain critical value of the medium length, or on a length segment. The analytical results are confirmed with direct numerical simulations in finite ensembles.
Keywords: twisted state, phase oscillators, nonlocal coupling, Ott – Antonsen reduction, stability analysis.
Funding agency Grant number
Russian Foundation for Basic Research 19-52-12053
Russian Science Foundation 19-12-00367
This work was supported by the RFBR (grant No. 19-52-12053) and the RSF (grant No. 19-12-00367).
Received: 23.10.2019
Accepted: 10.11.2019
Bibliographic databases:
Document Type: Article
MSC: 34C15
Language: English
Citation: Dmitry Bolotov, Maxim Bolotov, Lev Smirnov, Grigory Osipov, Arkady Pikovsky, “Twisted States in a System of Nonlinearly Coupled Phase Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 717–724
Citation in format AMSBIB
\Bibitem{BolBolSmi19}
\by Dmitry Bolotov, Maxim Bolotov, Lev Smirnov, Grigory Osipov, Arkady Pikovsky
\paper Twisted States in a System of Nonlinearly Coupled Phase Oscillators
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 6
\pages 717--724
\mathnet{http://mi.mathnet.ru/rcd1035}
\crossref{https://doi.org/10.1134/S1560354719060091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511339400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076350324}
Linking options:
  • https://www.mathnet.ru/eng/rcd1035
  • https://www.mathnet.ru/eng/rcd/v24/i6/p717
  • This publication is cited in the following 11 articles:
    1. L A Smirnov, M I Bolotov, A Pikovsky, “Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators”, J. Phys. Complex., 5:1 (2024), 015019  crossref
    2. Yong-Hyok An, Myong-Su Ho, Ryong-Son Kim, Chol-Ung Choe, “Stability of the twisted states in a ring of oscillators interacting with distance-dependent delays”, Physica D: Nonlinear Phenomena, 464 (2024), 134204  crossref
    3. Christian Bick, Tobias Böhle, Oleh E Omel'chenko, “Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions”, J. Phys. Complex., 5:2 (2024), 025026  crossref
    4. Jin-Song Kang, Yong-Hyok An, Ryong-Son Kim, Chol-Ung Choe, “Periodic external driving of transmission-delay-coupled phase oscillator system: Switching between different twisted states”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:12 (2024)  crossref
    5. Hao-jie Luo, Yu Xue, Mu-yang Huang, Yi Wang, Qiang Zhang, Kun Zhang, “Turing patterns on coupled phase oscillator chains with localized many-body interactions”, EPL, 142:4 (2023), 41002  crossref
    6. D. I. Bolotov, M. I. Bolotov, L. A. Smirnov, G. V. Osipov, A. S. Pikovsky, “Synchronization Regimes in an Ensemble of Phase Oscillators Coupled Through a Diffusion Field”, Radiophys Quantum El, 64:10 (2022), 709  crossref
    7. Seungjae Lee, Katharina Krischer, “Nontrivial twisted states in nonlocally coupled Stuart-Landau oscillators”, Phys. Rev. E, 106:4 (2022)  crossref
    8. M. Goebel, M. S. Mizuhara, S. Stepanoff, “Stability of twisted states on lattices of Kuramoto oscillators”, Chaos, 31:10 (2021), 103106  crossref  mathscinet  isi  scopus
    9. D. A. Safonov, V. K. Vanag, “Oscillatory microcells connected on a ring by chemical waves”, Chaos, 31:6 (2021), 063134  crossref  mathscinet  isi  scopus
    10. M. I. Bolotov, L. A. Smirnov, E. S. Bubnova, G. V. Osipov, A. S. Pikovsky, “Spatiotemporal regimes in the Kuramoto-Battogtokh system of nonidentical oscillators”, J. Exp. Theor. Phys., 132:1 (2021), 127–147  crossref  isi  scopus
    11. Y. Kawamura, “Stable plane waves in nonlocally coupled phase oscillators”, AIP Adv., 11:1 (2021), 015304  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:177
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025