Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2019, Volume 24, Issue 6, Pages 649–670
DOI: https://doi.org/10.1134/S1560354719060054
(Mi rcd1031)
 

This article is cited in 5 scientific papers (total in 5 papers)

Stability of Periodic Solutions of the $N$-vortex Problem in General Domains

Björn Gebharda, Rafael Ortegab

a Universität Leipzig, Mathematisches Institut, Augustusplatz 10, 04109 Leipzig, Germany
b Universidad de Granada, Departamento de Matemática Aplicada, 18071 Granada, Spain
Citations (5)
References:
Abstract: We investigate stability properties of a type of periodic solutions of the $N$-vortex problem on general domains $\Omega\subset \mathbb{R}^2$. The solutions in question bifurcate from rigidly rotating configurations of the whole-plane vortex system and a critical point $a_0\in\Omega$ of the Robin function associated to the Dirichlet Laplacian of $\Omega$. Under a linear stability condition on the initial rotating configuration, which can be verified for examples consisting of up to 4 vortices, we show that the linear stability of the induced solutions is solely determined by the type of the critical point $a_0$. If $a_0$ is a saddle, they are unstable. If $a_0$ is a nondegenerate maximum or minimum, they are stable in a certain linear sense. Since nondegenerate minima exist generically, our results apply to most domains $\Omega$. The influence of the general domain $\Omega$ can be seen as a perturbation breaking the symmetries of the $N$-vortex system on $\mathbb{R}^2$. Symplectic reduction is not applicable and our analysis on linearized stability relies on the notion of approximate eigenvectors. Beyond linear stability, Herman's last geometric theorem allows us to prove the existence of isoenergetically orbitally stable solutions in the case of $N=2$ vortices.
Keywords: vortex dynamics, periodic solutions, stability, Floquet multipliers, bifurcation, Poincaré section.
Funding agency Grant number
German Academic Exchange Service (DAAD) 57314604
Ministerio de Economía y Competitividad de España MTM2017-82348-C2-1-P
B. G. has been supported by DAAD grant 57314604. R.O. has been supported by MTM2017-82348-C2-1-P (Spain).
Received: 05.06.2019
Accepted: 07.10.2019
Bibliographic databases:
Document Type: Article
Language: English
Citation: Björn Gebhard, Rafael Ortega, “Stability of Periodic Solutions of the $N$-vortex Problem in General Domains”, Regul. Chaotic Dyn., 24:6 (2019), 649–670
Citation in format AMSBIB
\Bibitem{GebOrt19}
\by Bj\"orn Gebhard, Rafael Ortega
\paper Stability of Periodic Solutions of the $N$-vortex Problem in General Domains
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 6
\pages 649--670
\mathnet{http://mi.mathnet.ru/rcd1031}
\crossref{https://doi.org/10.1134/S1560354719060054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511339400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076229642}
Linking options:
  • https://www.mathnet.ru/eng/rcd1031
  • https://www.mathnet.ru/eng/rcd/v24/i6/p649
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:163
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024