Abstract:
We consider two types of trajectories found in a wide range of mechanical systems, viz. box orbits and loop orbits. We elucidate the dynamics of these orbits in the simple context of a perturbed harmonic oscillator in two dimensions. We then examine the small-amplitude motion of a rigid body, the rock’n’roller, a sphere with eccentric distribution of mass. The equations of motion are expressed in quaternionic form and a complete analytical solution is obtained. Both types of orbit, boxes and loops, are found, the particular form depending on the initial conditions. We interpret the motion in terms of epi-elliptic orbits. The phenomenon of recession, or reversal of precession, is associated with box orbits. The small-amplitude solutions for the symmetric case, or Routh sphere, are expressed explicitly in terms of epicycles; there is no recession in this case.
Keywords:
rolling body dynamics, nonholonomic constraints, Hamiltonian dynamics.
Citation:
Peter Lynch, Miguel D. Bustamante, “Quaternion Solution for the Rock’n’roller: Box Orbits, Loop Orbits and Recession”, Regul. Chaotic Dyn., 18:1-2 (2013), 166–183
\Bibitem{LynBus13}
\by Peter Lynch, Miguel D. Bustamante
\paper Quaternion Solution for the Rock’n’roller: Box Orbits, Loop Orbits and Recession
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 166--183
\mathnet{http://mi.mathnet.ru/rcd103}
\crossref{https://doi.org/10.1134/S1560354713010127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040990}
\zmath{https://zbmath.org/?q=an:1273.70007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400012}
Linking options:
https://www.mathnet.ru/eng/rcd103
https://www.mathnet.ru/eng/rcd/v18/i1/p166
This publication is cited in the following 4 articles:
Alexander A. Kilin, Elena N. Pivovarova, “Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 24:2 (2019), 212–233
Miguel D. Bustamante, Peter Lynch, “Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball”, Regul. Chaotic Dyn., 24:5 (2019), 511–524
A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453