Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1997, Volume 2, Issue 3-4, Pages 139–155
DOI: https://doi.org/10.1070/RD1997v002n04ABEH000054
(Mi rcd1016)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the 60th birthday of V.I.Arnold

Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci

L. M. Lerman

Research Institute for Appl. Math. & Cybernetics, 10, Ul'yanov St., Nizhny Novgorod, 603005 Russia
Citations (3)
Abstract: We study a 1-parametric family of the Hamiltonian systems with 2 hyperbolic fixed points and analyze the structure and bifurcations of homoclinic and heteroclinic trajectories under the variation of the parameter and energy values.
Received: 01.12.1997
Bibliographic databases:
Document Type: Article
Language: English
Citation: L. M. Lerman, “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci”, Regul. Chaotic Dyn., 2:3-4 (1997), 139–155
Citation in format AMSBIB
\Bibitem{Ler97}
\by L. M. Lerman
\paper Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci
\jour Regul. Chaotic Dyn.
\yr 1997
\vol 2
\issue 3-4
\pages 139--155
\mathnet{http://mi.mathnet.ru/rcd1016}
\crossref{https://doi.org/10.1070/RD1997v002n04ABEH000054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702345}
\zmath{https://zbmath.org/?q=an:0945.37017}
Linking options:
  • https://www.mathnet.ru/eng/rcd1016
  • https://www.mathnet.ru/eng/rcd/v2/i3/p139
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024