Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 1-2, Pages 144–158
DOI: https://doi.org/10.1134/S1560354713010103
(Mi rcd101)
 

This article is cited in 76 scientific papers (total in 76 papers)

How to Control the Chaplygin Ball Using Rotors. II

Alexey V. Borisovabc, Alexander A. Kilinbac, Ivan S. Mamaevcba

a Institute of Computer Science; Laboratory of Nonlinear Analysis and the Design of New Types of Vehicles, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia
c A.A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
Citations (76)
References:
Abstract: In our earlier paper [3] we examined the problem of control of a balanced dynamically nonsymmetric sphere with rotors with no-slip condition at the point of contact. In this paper we investigate the controllability of a ball in the presence of friction. We also study the problem of the existence and stability of singular dissipation-free periodic solutions for a free ball in the presence of friction forces. The issues of constructive realization of the proposed algorithms are discussed.
Keywords: non-holonomic constraint, control, dry friction, viscous friction, stability, periodic solutions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation NSh-2519.2012.1
1.1248.2011
1.7734.2013
1.7734.2013
This research was supported by the Presidential grant of leading scientific schools NSh-2519.2012.1. and Target Programmes for 2012–2014 (State contract 1.1248.2011, 1.7734.2013, 1.7734.2013).
Received: 12.12.2012
Accepted: 16.02.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “How to Control the Chaplygin Ball Using Rotors. II”, Regul. Chaotic Dyn., 18:1-2 (2013), 144–158
Citation in format AMSBIB
\Bibitem{BorKilMam13}
\by Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev
\paper How to Control the Chaplygin Ball Using Rotors. II
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 144--158
\mathnet{http://mi.mathnet.ru/rcd101}
\crossref{https://doi.org/10.1134/S1560354713010103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040988}
\zmath{https://zbmath.org/?q=an:1303.37021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400010}
Linking options:
  • https://www.mathnet.ru/eng/rcd101
  • https://www.mathnet.ru/eng/rcd/v18/i1/p144
    Comments
    This publication is cited in the following 76 articles:
    1. Aminata Diouf, Bruno Belzile, Maarouf Saad, David St-Onge, “Spherical rolling robots—Design, modeling, and control: A systematic literature review”, Robotics and Autonomous Systems, 175 (2024), 104657  crossref
    2. D. Spitaleri, G. Pepe, M. Laurenza, S. Milana, A. Carcaterra, 2024 13th International Workshop on Robot Motion and Control (RoMoCo), 2024, 243  crossref
    3. Alexander P. Ivanov, “On the bifurcations of the phase portrait of gyrostat”, Nonlinear Dyn, 112:20 (2024), 17989  crossref
    4. Bernard Brogliato, “Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives”, Annual Reviews in Control, 55 (2023), 297  crossref
    5. Seyed Amir Tafrishi, Mikhail Svinin, Motoji Yamamoto, Yasuhisa Hirata, “A geometric motion planning for a spin-rolling sphere on a plane”, Applied Mathematical Modelling, 121 (2023), 542  crossref
    6. A.P. Ivanov, “Attenuation control of gyrostat without energy supply”, International Journal of Non-Linear Mechanics, 154 (2023), 104441  crossref
    7. Yu. L. Karavaev, “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750  mathnet  crossref  mathscinet
    8. G. R. Saypulaev, B. I. Adamov, A. I. Kobrin, “Comparative Analysis of the Dynamics of a Spherical Robot with a Balanced Internal Platform Taking into Account Different Models of Contact Friction”, Rus. J. Nonlin. Dyn., 18:5 (2022), 803–815  mathnet  crossref  mathscinet
    9. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    10. A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Rus. J. Nonlin. Dyn., 16:3 (2020), 453–462  mathnet  crossref  mathscinet
    11. Fasso F., Passarella S., Zoppello M., “Control of Locomotion Systems and Dynamics in Relative Periodic Orbits”, J. Geom. Mech., 12:3 (2020), 395–420  crossref  mathscinet  zmath  isi  scopus
    12. Borisov A.V., Ivanov A.P., “Adaptation of the Jellett Integral to the Case of Rolling Friction”, Dokl. Phys., 65:7 (2020), 252–254  crossref  isi  scopus
    13. Vakhtang Putkaradze, Stuart M. Rogers, “On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses”, Regul. Chaotic Dyn., 24:2 (2019), 145–170  mathnet  crossref
    14. Bizyaev I.A. Borisov V A. Kozlov V.V. Mamaev I.S., “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  isi  scopus
    15. Borisov A., Kilin A., Karavaev Yu., Klekovkin A., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592  crossref  mathscinet  zmath  isi  scopus
    16. Ivanov A.P., “Rolling Friction”, Dokl. Phys., 64:3 (2019), 129–133  crossref  isi  scopus
    17. Borisov A. Kilin A. Mamaev I., “Invariant Submanifolds of Genus 5 and a Cantor Staircase in the Nonholonomic Model of a Snakeboard”, Int. J. Bifurcation Chaos, 29:3 (2019), 1930008  crossref  mathscinet  zmath  isi  scopus
    18. Ivanova T.B. Kilin A.A. Pivovarova E.N., “Controlled Motion of a Spherical Robot With Feedback. II”, J. Dyn. Control Syst., 25:1 (2019), 1–16  crossref  mathscinet  zmath  isi  scopus
    19. T. B. Ivanova, A. A. Kilin, E. N. Pivovarova, “Controlled motion of a spherical robot with feedback. I”, J. Dyn. Control Syst., 24:3 (2018), 497–510  crossref  mathscinet  zmath  isi  scopus
    20. A. R. Chowdhury, G. S. Soh, Sh. Foong, K. L. Wood, “Implementation of caterpillar inspired rolling gait and nonlinear control strategy in a spherical robot”, J. Bionic Eng., 15:2, SI (2018), 313–328  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:350
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025