Abstract:
An experimental investigation was made of stimulated Raman scattering (STRS) of single-mode and multimode optical beams. It was found that under conditions of pumping by a single-mode beam at an excess over the parallel STRS threshold, the Stokes wave divergence increases rapidly and the contribution to the axial intensity of the radiation propagating in the far-field zone is mainly governed by a comparatively small part of a laser pulse at subthreshold power. Under conditions of pumping by a multimode beam, the divergence of a parallel STRS Stokes wave only increases with excess over the threshold for fairly large-scale or, conversely, for essentially small-scale modulation of the laser beam. In the intermediate case, the Stokes wave divergence is similar to that of the pump wave up to a twofold excess over the threshold. It is also shown that as the scale of the transverse modulation of the laser beam decreases, the relative importance of the four-photon interaction decreases. As a result, the relative intensity of the anti-Stokes radiation decreases and that of the Stokes component increases. In conclusion, data are presented on the amplification of an approximately single-mode Stokes wave in the field of a focused multimode pump beam. It is shown that there is an optimal laser beam power at which the coefficient of conversion of the energy into a Stokes wave with divergence close to the diffraction limit has a maximum.
Citation:
N. F. Andreev, V. I. Bespalov, A. M. Kiselev, G. A. Pasmanik, “Experimental investigation of the spatial structure of the first Stokes component of stimulated Raman scattering”, Kvantovaya Elektronika, 6:5 (1979), 996–1003 [Sov J Quantum Electron, 9:5 (1979), 585–589]
Linking options:
https://www.mathnet.ru/eng/qe9032
https://www.mathnet.ru/eng/qe/v6/i5/p996
This publication is cited in the following 19 articles:
O. S. Sidelnikov, A. G. Kuznetsov, D. S. Kharenko, M. D. Gervaziev, E. V. Podivilov, M. P. Fedoruk, S. Wabnitz, S. A. Babin, J. Opt. Soc. Am. B, 40:12 (2023), 3269
Oleg S. Sidelnikov, Evgeny V. Podivilov, Mikhail P. Fedoruk, Alexey G. Kuznetsov, Stefan Wabnitz, Sergey A. Babin, Opt. Express, 30:5 (2022), 8212
Sergey A. Babin, Alexey G. Kuznetsov, Oleg S. Sidelnikov, Sergey I. Kablukov, Evgeny V. Podivilov, Mikhail P. Fedoruk, Stefan Wabnitz, Laser Congress 2021 (ASSL,LAC), 2021, JM3A.12
Sergey A. Babin, Alexey G. Kuznetsov, Oleg S. Sidelnikov, Alexey A. Wolf, Ilya N. Nemov, Sergey I. Kablukov, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Stefan Wabnitz, Sci Rep, 11:1 (2021)
J. C. van den Heuvel, J. Opt. Soc. Am. B, 12:4 (1995), 650
G. Hilfer, C. R. Menyuk, J. Reintjes, J. Opt. Soc. Am. B, 10:1 (1993), 67
Godehard Hilfer, Curtis R. Menyuk, Opt. Lett., 17:13 (1992), 949
Joseph W. Haus, Michael Scalora, Phys. Rev. A, 42:5 (1990), 3149
P. Alsing, P. Peterson, D. Cardimona, A. Gavrielides, IEEE J. Quantum Electron., 23:5 (1987), 557
Hiroshi Komine, William H. Long, Eddy A. Stappaerts, Stephen J. Brosnan, J. Opt. Soc. Am. B, 3:10 (1986), 1428
J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duignan, G. Calame, J. Opt. Soc. Am. B, 3:10 (1986), 1408
Kai J. Drühl, J. Opt. Soc. Am. B, 3:10 (1986), 1363
F. De Rougemont, R. Frey, F. Pradère, Optica Acta: International Journal of Optics, 32:9-10 (1985), 1281
David A. Rockwell, Hans W. Bruesselbach, NATO ASI Series, Physics of New Laser Sources, 1985, 411
H. Gruhl, R. Sigel, IEEE J. Quantum Electron., 20:9 (1984), 1065
J. Goldhar, M. Taylor, J. Murray, IEEE J. Quantum Electron., 20:7 (1984), 772
R. S. F. Chang, N. Djeu, Opt. Lett., 8:3 (1983), 139
G. Valley, IEEE J. Quantum Electron., 18:9 (1982), 1370
R. Kung, J. Hammond, IEEE J. Quantum Electron., 18:8 (1982), 1306