Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1978, Volume 5, Number 2, Pages 331–336 (Mi qe8479)  

This article is cited in 1 scientific paper (total in 1 paper)

Theory of a doubly resonant multimode-pumped optical parametric oscillator

G. P. Dzhotyan, Yu. E. D'yakov
Full-text PDF (868 kB) Citations (1)
Abstract: A theoretical investigation is made of a doubly resonant multimode-pumped optical parametric oscillator (OPO) in both the cw and pulsed stimulated emission regimes. The conditions for efficient conversion of a broad-band pump wave into a narrow-band signal wave are discussed. Allowance for saturation effects is made in the analysis.
Received: 28.02.1977
English version:
Soviet Journal of Quantum Electronics, 1978, Volume 8, Issue 2, Pages 191–194
DOI: https://doi.org/10.1070/QE1978v008n02ABEH008479
Document Type: Article
UDC: 621.378.325
PACS: 42.65.Cq
Language: Russian


Citation: G. P. Dzhotyan, Yu. E. D'yakov, “Theory of a doubly resonant multimode-pumped optical parametric oscillator”, Kvantovaya Elektronika, 5:2 (1978), 331–336 [Sov J Quantum Electron, 8:2 (1978), 191–194]
Linking options:
  • https://www.mathnet.ru/eng/qe8479
  • https://www.mathnet.ru/eng/qe/v5/i2/p331
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024