Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1986, Volume 13, Number 12, Pages 2378–2385 (Mi qe8450)  

This article is cited in 1 scientific paper (total in 1 paper)

Main optics equations for waveguides with a curved surface

V. A. Kiselev
Abstract: An analysis is made of planar waveguides with a continuously curved surface, of the type used to form geodesic lenses in integrated optics. Two types of normal electromagnetic waves supported by these waveguides are considered. The Maxwell equations are used to derive a two-dimensional scalar wave equation describing the propagation, interference, and diffraction of these waves by a curved waveguide surface. The corresponding eikonal equation is formulated in the geometric-optics limit.
Received: 04.09.1985
English version:
Soviet Journal of Quantum Electronics, 1986, Volume 16, Issue 12, Pages 1574–1578
DOI: https://doi.org/10.1070/QE1986v016n12ABEH008450
Bibliographic databases:
Document Type: Article
UDC: 621.372.8.029.7
PACS: 42.82.Et, 42.79.Bh, 41.20.Jb, 42.25.Bs, 42.15.-i
Language: Russian


Citation: V. A. Kiselev, “Main optics equations for waveguides with a curved surface”, Kvantovaya Elektronika, 13:12 (1986), 2378–2385 [Sov J Quantum Electron, 16:12 (1986), 1574–1578]
Linking options:
  • https://www.mathnet.ru/eng/qe8450
  • https://www.mathnet.ru/eng/qe/v13/i12/p2378
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :244
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024