Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1989, Volume 16, Number 7, Pages 1388–1390 (Mi qe8241)  

Active media

Feasibility of construction of a photodissociation laser utilizing the 2P1/2 → 2P3/2 fine-structure transition in the fluorine atom

S. A. Sotnichenko
Abstract: Calculations of the stimulated emission cross section of a fine-structure transition in the fluorine atom and various experimental results obtained previously are used to analyze the feasibility of developing a photodissociation laser emitting due to the λ = 24.75 μm transition. An estimate is given of the threshold gain and several conditions required to achieve lasing are determined.
Received: 26.10.1988
English version:
Soviet Journal of Quantum Electronics, 1989, Volume 19, Issue 7, Pages 896–897
DOI: https://doi.org/10.1070/QE1989v019n07ABEH008241
Bibliographic databases:
Document Type: Article
UDC: 621.373.826.038.823
PACS: 42.55.Ks, 42.60.By, 42.60.Jf, 42.60.Lh
Language: Russian


Citation: S. A. Sotnichenko, “Feasibility of construction of a photodissociation laser utilizing the 2P1/2 → 2P3/2 fine-structure transition in the fluorine atom”, Kvantovaya Elektronika, 16:7 (1989), 1388–1390 [Sov J Quantum Electron, 19:7 (1989), 896–897]
Linking options:
  • https://www.mathnet.ru/eng/qe8241
  • https://www.mathnet.ru/eng/qe/v16/i7/p1388
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024