Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1985, Volume 12, Number 8, Pages 1686–1689 (Mi qe7585)  

Use of an optical data processing method for determination of the fraction of wavef ront reversal

M. Hajek
Abstract: A theoretical proposal is made of a new method for determination of the degree of reproduction in wavefront reversal (reversal fraction) based on filtering and optical processing. It is shown that the reversal fraction could be found by determining the convolution of the spatial Fourier spectra of the signal (incident) and reversed waves. An experimental setup is suggested. A brief discussion is given of the advantages and shortcomings of the proposed method, and a comparison is made with other methods.
Received: 10.10.1984
English version:
Soviet Journal of Quantum Electronics, 1985, Volume 15, Issue 8, Pages 1109–1111
DOI: https://doi.org/10.1070/QE1985v015n08ABEH007585
Bibliographic databases:
Document Type: Article
UDC: 621.373.826
PACS: 42.30.Kq, 42.65.Hw, 42.79.Ci
Language: Russian


Citation: M. Hajek, “Use of an optical data processing method for determination of the fraction of wavef ront reversal”, Kvantovaya Elektronika, 12:8 (1985), 1686–1689 [Sov J Quantum Electron, 15:8 (1985), 1109–1111]
Linking options:
  • https://www.mathnet.ru/eng/qe7585
  • https://www.mathnet.ru/eng/qe/v12/i8/p1686
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024