Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1985, Volume 12, Number 1, Pages 104–107 (Mi qe5848)  

This article is cited in 1 scientific paper (total in 1 paper)

Optimal parameters of single-mode LiNbO3:Ti waveguides for collinear acoustooptic interaction

D. V. Petrov, J. Čtyroký
Full-text PDF (651 kB) Citations (1)
Abstract: It is shown that under the collinear acoustooptic interaction conditions there should be just one set of parameters of an anisotropic waveguide which can ensure the maximum interaction efficiency. A calculation is made of the influence of the increment in the refractive index on the efficiency of interaction at several wavelengths.
Received: 02.04.1984
English version:
Soviet Journal of Quantum Electronics, 1985, Volume 15, Issue 1, Pages 58–60
DOI: https://doi.org/10.1070/QE1985v015n01ABEH005848
Bibliographic databases:
Document Type: Article
UDC: 621.372.8.029.7
PACS: 42.79.Gn, 42.79.Jq, 43.35.Sx
Language: Russian


Citation: D. V. Petrov, J. Čtyroký, “Optimal parameters of single-mode LiNbO3:Ti waveguides for collinear acoustooptic interaction”, Kvantovaya Elektronika, 12:1 (1985), 104–107 [Sov J Quantum Electron, 15:1 (1985), 58–60]
Linking options:
  • https://www.mathnet.ru/eng/qe5848
  • https://www.mathnet.ru/eng/qe/v12/i1/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024