Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1982, Volume 9, Number 2, Pages 308–315 (Mi qe5468)  

Linear transitions to highly excited stretching vibrations of molecular groups

M. S. Kitai
Abstract: The Wentzel–Kramers–Brillouin approximation is used to calculate the intensity of transitions to highly excited stretching vibrations of molecular groups. The problem was solved using the three-dimensional single-particle potential approximation. The limits of validity of the local mode model are identified. Calculations are made of the wavelengths and intensities of transitions accompanied by excitation of overtones of stretching vibrations of hydrogen in the benzene ring. The results of the calculations are compared with an experiment to measure the transmission of a polystyrene fiber-optic line.
Received: 01.04.1981
English version:
Soviet Journal of Quantum Electronics, 1982, Volume 12, Issue 2, Pages 167–171
DOI: https://doi.org/10.1070/QE1982v012n02ABEH005468
Bibliographic databases:
Document Type: Article
UDC: 621.373.826:535.338.334
PACS: 33.10.Gx, 36.20.-r, 78.20.Dj, 42.80.Mv
Language: Russian


Citation: M. S. Kitai, “Linear transitions to highly excited stretching vibrations of molecular groups”, Kvantovaya Elektronika, 9:2 (1982), 308–315 [Sov J Quantum Electron, 12:2 (1982), 167–171]
Linking options:
  • https://www.mathnet.ru/eng/qe5468
  • https://www.mathnet.ru/eng/qe/v9/i2/p308
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024