Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1995, Volume 22, Number 5, Pages 491–496 (Mi qe390)  

Nonlinear optical phenomena

Stochastic aspects of transient processes in optical bistable systems

V. V. Pomortsev

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow
Abstract: A stochastic theory of relaxation in optical bistable systems is developed. The Fokker–Planck equation for the amplitude distribution function of an electromagnetic field in a passive medium is derived from fundamental principles in the adiabatic approximation. An analysis of the lowest eigenstates is used to construct a theory of relaxation of metastable and unstable states.
Received: 19.07.1993
Revised: 10.01.1995
English version:
Quantum Electronics, 1995, Volume 25, Issue 5, Pages 467–471
DOI: https://doi.org/10.1070/QE1995v025n05ABEH000390
Bibliographic databases:
Document Type: Article
PACS: 42.65.Pc, 42.50.Ne
Language: Russian


Citation: V. V. Pomortsev, “Stochastic aspects of transient processes in optical bistable systems”, Kvantovaya Elektronika, 22:5 (1995), 491–496 [Quantum Electron., 25:5 (1995), 467–471]
Linking options:
  • https://www.mathnet.ru/eng/qe390
  • https://www.mathnet.ru/eng/qe/v22/i5/p491
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024