Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1992, Volume 19, Number 5, Pages 474–476 (Mi qe3476)  

Control of laser radiation parameters

Compression of frequency-modulated pulses by dynamic scattering in crystals under the Bragg geometry conditions

S. M. Arakelyan, V. A. Makarov, S. Yu. Slinkin
Abstract: An investigation was made of the dynamics of reduction in the duration of a frequency-modulated pulse as a result of its interaction with a linear spatially periodic medium of finite thickness in the Bragg geometry. The relationships between the parameters of the radiation and the medium, ensuring the maximum compression of the transmitted and reflected pulses, were determined.
Received: 22.11.1991
English version:
Soviet Journal of Quantum Electronics, 1992, Volume 22, Issue 5, Pages 431–433
DOI: https://doi.org/10.1070/QE1992v022n05ABEH003476
Bibliographic databases:
Document Type: Article
UDC: 621.373.826
PACS: 42.65.Re, 42.70.Mp, 42.70.Df
Language: Russian


Citation: S. M. Arakelyan, V. A. Makarov, S. Yu. Slinkin, “Compression of frequency-modulated pulses by dynamic scattering in crystals under the Bragg geometry conditions”, Kvantovaya Elektronika, 19:5 (1992), 474–476 [Sov J Quantum Electron, 22:5 (1992), 431–433]
Linking options:
  • https://www.mathnet.ru/eng/qe3476
  • https://www.mathnet.ru/eng/qe/v19/i5/p474
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024