Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1993, Volume 20, Number 11, Pages 1137–1139 (Mi qe3241)  

This article is cited in 7 scientific papers (total in 7 papers)

Nonlinear-optics phenomena

Equation of a ray path with circular polarization

N. R. Sadykov

All-Russian Research Institute of Technical Physics, Chelyabinsk
Full-text PDF (132 kB) Citations (7)
Abstract: An equation for the path of a ray with allowance for circular polarization is derived from Maxwell's equations in the geometric-optics approximation. This equation describes the twisting of an originally plane path which has been observed experimentally ("the optical Magnus effect" or "optical ping-pong effect"). This effect is intensified in an absorbing medium.
Received: 16.03.1993
English version:
Quantum Electronics, 1993, Volume 23, Issue 11, Pages 989–990
DOI: https://doi.org/10.1070/QE1993v023n11ABEH003241
Bibliographic databases:
Document Type: Article
UDC: 681.7.068.4:535.3
PACS: 42.79.Gn, 42.15.Dp
Language: Russian


Citation: N. R. Sadykov, “Equation of a ray path with circular polarization”, Kvantovaya Elektronika, 20:11 (1993), 1137–1139 [Quantum Electron., 23:11 (1993), 989–990]
Linking options:
  • https://www.mathnet.ru/eng/qe3241
  • https://www.mathnet.ru/eng/qe/v20/i11/p1137
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024