Loading [MathJax]/jax/output/SVG/config.js
Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2004, Volume 34, Number 11, Pages 989–1003 (Mi qe2695)  

This article is cited in 31 scientific papers (total in 31 papers)

Invited paper

Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse

S. Yu. Gus'kova, S. Borodziukb, M. Kalalc, A. Kasperczukb, B. Kralikovad, E. Krouskyd, J. Limpouchc, K. Masekd, T. Pisarczykb, P. Pisarczyke, M. Pfeiferd, K. Rohlenad, J. Skalad, J. Ullschmiedd

a P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow
b Institute of Plasma Physics and Laser Microfusion, Poland
c Faculty of Nuclear Sciences and Physics Engineering, Czech Technical University
d PALS Research Center, Academy of Sciences of the Czech Republic
e Warsaw University of Technology
Abstract: The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50–200 ns). The investigations were conducted for a laser radiation energy of 100 J at two wavelengths of 0.438 and 1.315 μm. For a given pulse energy, the irradiation intensity was varied in a broad range (1013–1016 W cm-2) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant.
Received: 15.04.2004
Revised: 22.07.2004
English version:
Quantum Electronics, 2004, Volume 34, Issue 11, Pages 989–1003
DOI: https://doi.org/10.1070/QE2004v034n11ABEH002695
Bibliographic databases:
Document Type: Article
PACS: 62.50.+p, 52.38.Mf, 79.20.Ds
Language: Russian


Citation: S. Yu. Gus'kov, S. Borodziuk, M. Kalal, A. Kasperczuk, B. Kralikova, E. Krousky, J. Limpouch, K. Masek, T. Pisarczyk, P. Pisarczyk, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, “Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse”, Kvantovaya Elektronika, 34:11 (2004), 989–1003 [Quantum Electron., 34:11 (2004), 989–1003]
Linking options:
  • https://www.mathnet.ru/eng/qe2695
  • https://www.mathnet.ru/eng/qe/v34/i11/p989
  • This publication is cited in the following 31 articles:
    1. S. V. Simakov, N. A. Vinogradova, O. N. Nikitushkina, Inorg. Mater. Appl. Res., 14:3 (2023), 617  crossref
    2. Gus'kov S.Yu. Demchenko N.N. Dmitriev E.O. Kuchugov P.A. Vergunova G.A. Yakhin R.A., Plasma Phys. Control. Fusion, 64:4 (2022), 045011  crossref  isi  scopus
    3. I. A. Belov, S. A. Bel'kov, S. V. Bondarenko, G. A. Vergunova, A. Yu. Voronin, S. G. Garanin, S. Yu. Golovkin, S. Yu. Gus'kov, N. N. Demchenko, V. N. Derkach, E. O. Dmitriev, N. V. Zmitrenko, A. V. Ilyushechkina, A. G. Kravchenko, I. V. Kuz'min, P. A. Kuchugov, A. E. Myusova, V. G. Rogachev, A. N. Rukavishnikov, E. Yu. Solomatina, K. V. Starodubtsev, P. V. Starodubtsev, I. A. Chugrov, O. O. Sharov, R. A. Yakhin, J. Exp. Theor. Phys., 134:3 (2022), 340  crossref
    4. A. Tentori, A. Colaïtis, D. Batani, Matter and Radiation at Extremes, 7:6 (2022)  crossref
    5. Gribkov V.A., Latyshev S.V., Pimenov V.N., Maslyaev S.A., Demina E.V., Demin A.S., Morozov E.V., Epifanov N.A., Kazilin E.E., Sasinovskaya I.P., Inorg. Mater.-Appl. Res., 12:2 (2021), 361–369  crossref  isi  scopus
    6. Shtereveria D.S., Volkova A.A., Kholopov A.A., Melnikova M.A., Melnikov D.M., AIP Conference Proceedings, 2318, eds. Mikrin E., Rogozin D., Aleksandrov A., Sadovnichy V., Fedorov I., Mayorova V., Amer Inst Physics, 2021, 090002  crossref  isi  scopus
    7. Quantum Electron., 50:8 (2020), 763–769  mathnet  crossref  isi  elib
    8. Gus'kov S.Yu. Kuchugov P.A. Yakhin R.A. Zmitrenko V N., High Energy Density Phys., 36 (2020), 100835  crossref  isi  scopus
    9. Shiganov I., Melnikov D., Misyurov A., Melnikova M., Shtereveria D., Myat Z., Opt. Quantum Electron., 52:4 (2020), 203  crossref  isi  scopus
    10. Gus'kov S.Yu. Kuchugov P.A. Yakhin R.A. Zmitrenko V N., Plasma Phys. Control. Fusion, 61:5 (2019), 055003  crossref  isi
    11. Bazzal K. Voropay E.S. Zajogin A.P. Patapovich M.P., Phys. Chem. Aspects Study Clusters Nanostruct. Nanomater., 2019, no. 11, 57–64  crossref  isi
    12. Pisarczyk T. Gus'kov S.Yu. Dudzak R. Renner O. Batani D. Chodukowski T. Rusiniak Z. Dostal J. Demchenko N.N. Rosinski M. Parys P. Smid M. Korneev Ph. Krousky E. Borodziuk S. Badziak J. Antonelli L. Gizzi L. Cristoforetti G. Koester P. Maheut Y. Volpe L. Baffigi F. Levato T. Skala J. Zaras-Szydlowska A. Trela J. Mancelli D. Ullschmied J. Pfeifer M. Juha L. Krus M. Hrebicek J. Medrik T. Jungwirth K. Krupka M. Pisarczyk P., Laser Part. Beams, 36:3 (2018), 405–426  crossref  isi  scopus
    13. Pisarczyk T. GuS'Kov S.Yu. Renner O. Dudzak R. Dostal J. Demchenko N.N. Smid M. Chodukowski T. Kalinowska Z. Rosinski M. Parys P. Badziak J. Batani D. Borodziuk S. Gizzi L.A. Krousky E. Maheut Y. Cristoforetti G. Antonelli L. Koester P. Baffigi F. Ullschmied J. Hrebicek J. Medrik T. Pfeifer M. Skala J. Pisarczyk P., Laser Part. Beams, 34:1 (2016), 94–108  crossref  isi  elib  scopus
    14. Timofeev I.S., Burdonskiy I.N., Goltsov A.Yu., Leonov A.G., Makarov K.N., Yufa V.N., II Conference on Plasma & Laser Research and Technologies, Journal of Physics Conference Series, 747, IOP Publishing Ltd, 2016, UNSP 012068  crossref  isi  scopus
    15. T. Pisarczyk, S.Yu. Gus'kov, O. Renner, N.N. Demchenko, Z. Kalinowska, Laser Part. Beams, 2015, 1  crossref  isi  scopus
    16. S.Y.u Gus’kov, Phys. Scr, 90:7 (2015), 074002  crossref  isi  scopus
    17. R. De Angelis, F. Consoli, S. Yu. Gus'kov, A. A. Rupasov, P. Andreoli, Phys. Plasmas, 22:7 (2015), 072701  crossref  isi  scopus
    18. Gus'kov S.Yu. Nicolai Ph. Ribeyre X. Tikhonchuk V.T., J. Exp. Theor. Phys., 121:3 (2015), 529–540  crossref  isi  scopus
    19. T. Pisarczyk, S. Yu. Gus'kov, Z. Kalinowska, J. Badziak, D. Batani, Phys. Plasmas, 21:1 (2014), 012708  crossref  adsnasa  isi  scopus
    20. Zofia Kalinowska, Tadeusz Pisarczyk, Jan Badziak, Stefan Borodziuk, Tomasz Chodukowski, Phys. Scr, T161 (2014), 014023  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :210
    First page:1
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025