Loading [MathJax]/jax/output/SVG/config.js
Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2000, Volume 30, Number 6, Pages 501–505 (Mi qe1751)  

This article is cited in 10 scientific papers (total in 10 papers)

IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99)

Critical electron density in a self-contained copper vapour laser in the restricted pulse repetition rate

S. I. Yakovlenko

A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow
Abstract: One of the mechanisms of the inversion breaking in copper vapour lasers caused by a high prepulse electron density is considered. Inversion breaking occurs at a critical electron density Ne cr. If the prepulse electron density exceeds Ne cr, the electron temperature Te cr cannot reach, during a plasma heating pulse, the temperature of ~2 eV required for lasing. A simple estimate of Ne cr is made.
Received: 15.10.1999
English version:
Quantum Electronics, 2000, Volume 30, Issue 6, Pages 501–505
DOI: https://doi.org/10.1070/QE2000v030n06ABEH001751
Bibliographic databases:
Document Type: Article
PACS: 42.55.Lt, 52.50.Gi
Language: Russian


Citation: S. I. Yakovlenko, “Critical electron density in a self-contained copper vapour laser in the restricted pulse repetition rate”, Kvantovaya Elektronika, 30:6 (2000), 501–505 [Quantum Electron., 30:6 (2000), 501–505]
Linking options:
  • https://www.mathnet.ru/eng/qe1751
  • https://www.mathnet.ru/eng/qe/v30/i6/p501
  • This publication is cited in the following 10 articles:
    1. M.A. Lavrukhin, P.A. Bokhan, P.P. Gugin, Dm.E. Zakrevsky, Optics & Laser Technology, 170 (2024), 110174  crossref
    2. Trigub Maxim, Gembukh Pavel, Kulagin Anton, Opt Quant Electron, 57:1 (2024)  crossref
    3. Yudin N.A. Yudin N.N., Russ. Phys. J., 58:12 (2016), 1782–1791  crossref  mathscinet  isi  elib  scopus
    4. Yudin N.A., Russ. Phys. J., 57:1 (2014), 128–134  crossref  isi  elib  scopus
    5. Quantum Electron., 42:6 (2012), 518–523  mathnet  crossref  adsnasa  isi  elib
    6. A. M. Boichenko, G. S. Evtushenko, S. N. Torgaev, Phys. Wave Phen., 19:3 (2011), 189  crossref
    7. V. A. Gerasimov, V. V. Gerasimov, Tech. Phys., 56:1 (2011), 147  crossref
    8. A. N. Soldatov, N. A. Yudin, A. V. Vasilieva, Yu. P. Polunin, G. D. Chebotarev, E. L. Latush, A. A. Fesenko, Quantum Electron., 38:11 (2008), 1009–1015  mathnet  mathnet  crossref  isi  scopus
    9. M. A. Kazaryan, N. A. Lyabin, A. N. Soldatov, N. A. Yudin, J Russ Laser Res, 26:5 (2005), 373  crossref
    10. O.V. Zhdaneev, Proceedings of the 7th International Scientific and Practical Conference of Students, Post-graduates and Young Scientists. Modern Techniques and Technology. MTT'2001 (Cat. No.01EX412), 2001, 45  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :219
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025