|
This article is cited in 8 scientific papers (total in 8 papers)
Fibre-optic sensors
Measurement accuracy and spatial resolution of a distributed temperature sensor based on a two-pulse differential coherent reflectometer
T. O. Lukashovaa, O. E. Naniiab, S. P. Nikitinc, V. N. Treshchikovad a T8 Scientific and Technical Center LLC, Moscow
b Faculty of Physics, Lomonosov Moscow State University
c T8 Sensor LLC, Moscow
d Kotelnikov Institute of Radioengineering and Electronics, Fryazino Branch, Russian Academy of Sciences
Abstract:
We present a model and numerical simulation of a distributed temperature sensor based on a two-pulse differential coherent optical time-domain reflectometer (COTDR). The differential phase measured using a phase-sensitive Rayleigh reflectometer is shown to have a regular component, which is a linear function of temperature, and a random component, which is related to a random distribution of scattering centres in the fibre and restricts the accuracy of measurements of variations in temperature. Measurement accuracy can be improved by reducing the relative contribution of the random component via a decrease in pulse duration and/or an increase in the time delay between pulses. The spatial resolution of a differential two-pulse phase-sensitive reflectometer is shown to be determined by the time delay between pulses and to vary little with pulse duration. At a typical pulse duration (200 ns) and delay time (300 ns), the accuracy in measurements of variations in temperature in the 0.1-K range is 2% and the spatial resolution is about 30 m.
Keywords:
optical time-domain reflectometer, Rayleigh temperature sensor, phase-sensitive reflectometer, spatial resolution, measurement accuracy.
Received: 12.12.2019 Revised: 14.02.2020
Citation:
T. O. Lukashova, O. E. Nanii, S. P. Nikitin, V. N. Treshchikov, “Measurement accuracy and spatial resolution of a distributed temperature sensor based on a two-pulse differential coherent reflectometer”, Kvantovaya Elektronika, 50:9 (2020), 882–887 [Quantum Electron., 50:9 (2020), 882–887]
Linking options:
https://www.mathnet.ru/eng/qe17308 https://www.mathnet.ru/eng/qe/v50/i9/p882
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 75 | References: | 28 | First page: | 16 |
|