Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2018, Volume 48, Number 6, Pages 537–544 (Mi qe16835)  

This article is cited in 11 scientific papers (total in 11 papers)

Diffraction gratings

Subwavelength diffraction gratings in the visible spectral range

N. I. Petrova, V. A. Danilova, V. V. Popovb, B. A. Usievichc

a Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences
b Lomonosov Moscow State University
c A.M. Prokhorov General Physics Institute Russian Academy of Sciences, Moscow
References:
Abstract: We report the results of computer calculations and measurements of subwavelength diffraction gratings in the visible range of the radiation spectrum. The influence of various grating parameters (duty cycle, microrelief shape and depth, material, angle of incidence, wavelength, and radiation polarisation) on the diffraction efficiency is studied. A distinctive feature of the subwavelength gratings in question is that the entire diffracted energy of the beam is redistributed into the zero and –1st orders. It is found that the zero order can be suppressed by choosing the depth and shape of the grating relief. The subwavelength gratings with a period of 400 nm are fabricated and measurements are performed using lasers and laser diodes emitting in the visible wavelength range. High diffraction efficiency into the –1st order (more than 70%) is observed in a wide spectral range of 450–650 nm with an increase in the grating relief depth (at a depth of h = 80 nm). It is experimentally demonstrated that under certain conditions, the plasmon resonance effect arises, in which total absorption of incident radiation takes place. The optical elements considered can be used in image processing systems, projection displays, in the development of various sensors, etc.
Keywords: subwavelength grating, diffraction efficiency, plasmon resonance.
Funding agency Grant number
Russian Science Foundation 17-19-01461
Received: 15.11.2017
Revised: 01.02.2018
English version:
Quantum Electronics, 2018, Volume 48, Issue 6, Pages 537–544
DOI: https://doi.org/10.1070/QEL16575
Bibliographic databases:
Document Type: Article
Language: Russian


Citation: N. I. Petrov, V. A. Danilov, V. V. Popov, B. A. Usievich, “Subwavelength diffraction gratings in the visible spectral range”, Kvantovaya Elektronika, 48:6 (2018), 537–544 [Quantum Electron., 48:6 (2018), 537–544]
Linking options:
  • https://www.mathnet.ru/eng/qe16835
  • https://www.mathnet.ru/eng/qe/v48/i6/p537
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :155
    References:30
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024