Abstract:
Photon-counting optical tomography was used in the visualisation and projective reconstruction of the image of a strongly absorbing inclusion (a ‘phantom’), 6 mm in diameter, hidden by multiple scattering processes in a model object (diameter 140 mm, absorption and scattering coefficients 0.005 and 1.4 mm$^{-1}$, respectively). It was demonstrated experimentally that when the probe radiation power was 10 – 13 mW the minimal (corresponding to the poorest signal/noise ratio $\sim$ 1) measurement time (photon-counting time) was 0.8 s per one measurement point and the total time needed to scan the whole object was less than 410 s.
Citation:
E. V. Malikov, V. M. Petnikova, D. A. Chursin, V. V. Shuvalov, I. V. Shutov, “Spatial resolution and scanning time in the optical tomography of absorbing ‘phantoms’ under multiple scattering conditions”, Kvantovaya Elektronika, 30:1 (2000), 78–80 [Quantum Electron., 30:1 (2000), 78–80]
\Bibitem{MalPetChu00}
\by E.~V.~Malikov, V.~M.~Petnikova, D.~A.~Chursin, V.~V.~Shuvalov, I.~V.~Shutov
\paper Spatial resolution and scanning time in the optical tomography of absorbing `phantoms' under multiple scattering conditions
\jour Kvantovaya Elektronika
\yr 2000
\vol 30
\issue 1
\pages 78--80
\mathnet{http://mi.mathnet.ru/qe1663}
\transl
\jour Quantum Electron.
\yr 2000
\vol 30
\issue 1
\pages 78--80
\crossref{https://doi.org/10.1070/QE2000v030n01ABEH001663}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086123000020}
Linking options:
https://www.mathnet.ru/eng/qe1663
https://www.mathnet.ru/eng/qe/v30/i1/p78
This publication is cited in the following 4 articles:
Quantum Electron., 44:7 (2014), 652–656
S. G. Proskurin, A. Yu. Potlov, S. V. Frolov, Biomed Eng, 46:6 (2013), 219
Sergey G. Proskurin, Anton Y. Potlov, Photonics & Lasers in Medicine, 2:2 (2013)
D. V. Apeksimov, N. N. Bochkarev, D. A. Bochkovskii, E. E. Bykova, A. M. Kabanov, Yu. V. Kistenev, E. S. Nikotin, V. A. Pogodaev, E. S. Protasevich, O. A. Romanovskii, A. N. Stepanov, S. V. Yakovlev, Russ Phys J, 53:5 (2010), 521